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Chapter 1

The Euclidean space R"

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space R™.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

the natural numbers {1,2,3,4,...},

the integers, i.e., signed whole numbers {...,—2,—1,0,1,2,...},
the rational numbers § with a € Z and b € N,

the real numbers,

the complex numbers,

QOFONZ

An open interval is an interval that does not include its boundary points and is

bt
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denoted by parentheses. The open intervals are thus one of the forms

(a,b) ={r € R:a < x < b},
(—o0,b) ={zx € R:z < b},
(a,40) ={r €R:a <z},
(—o0, +o0) =R,
where a and b are real numbers with a < b. The interval (a,a) = ) is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

la,b] ={z € R:a <z < b},
(—o0,b] ={zr e R:z < b},
[a,+00) ={z € R:a <z},

(—o0, +00) = R,
Closed intervals are closed sets in the topology of R. Note that the interval R =
(—o00, +00) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a,b) ={x € R:a <z < b},
la,b) ={z € R:a < x < b},
Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a,b], [a,b), (a,b], (a,b) for a,b € R with a < b are called

bounded intervals, whereas intervals like (—o0,b], (—o0,b), [a, +00), and (a,+00) are
unbounded intervals.

1.1 The vector space R"

Given a positive integer n, the set R™ is defined as the set of all ordered n-tuples
(x1,...,2,) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Fuclidean space.

We can represent an element of R” either as an n-tuple, which is the same as a row
vector with n entries,

x = (z1,...,2,)

or as a column vector with n entries

T
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of R” in calculations, and row vectors to denote
elements of R as input parameters of functions defined on R".

There are also different ways in which elements in R™ are denoted, the three most
common are

x, X, and Z.

In this text, we will predominantly use x for elements in R and x for elements in R"
for n > 2.
If n = 1 then R! = R corresponds to the real line.
0 x

| |
T T

If n = 2 then R? corresponds to the 2-dimensional plane. A point in R? is usually
written as either (z,%) or x = (21, 25) .

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R? is usually
written as eitehr (z,y,2) or X = (21, 2, 73)".

x3




8 CHAPTER 1. THE EUCLIDEAN SPACE R"

The set R™ is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on R" is defined coordinate wise
by

x (1 T1+
xty=| |+ =] :
Tn Yn Tn + Yn
The multiplication of an element x € R™ by a scalar A € R is defined as

I )\.fL'l

T, ALy,

The way in which addition and multiplication on R™ interact is described by the
distributive law, which asserts that

AMx+y) = x4+ M\y. (Distributive Law)

The vector space R™ is also equipped with a scalar product (.,.): R* x R" — R
defined as

(5, ¥} = zy (1.1)

Properties of the scalar product: The scalar product satisfies the three following
properties:
1. Positive-definiteness: (x,x) > 0 for all x € R", with equality only for x = 0.
2. Symmetry: (x,y) = (y,x) for all x,y € R".
3. Bilinearity: (ax + fy,z) = a(x,z) + 5(y,z) for all x,y,z € R" and o, € R.
In linear algebra, a vector x is also an n x 1 matrix. Its transpose, written x' =
(x1,...,2,), is therefore a 1 X n matrix, and we can interpret the scalar product of

two vectors x,y as the matrix product of x" and y:

Y1

<X7Y>:XT'y:(‘T17'-'axn)'
Yn

1.2 The Euclidean distance on R"

To be able to extend the analytical methods presented in Analysis 1 to the space R",
it is important to endow R™ with a topological structure. On R we have used the
absolute value to define a distance d(x,y) = |x — y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space R™. To do so, we will introduce the concepts of a
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norm and a metric.

Definition 1.1 (The Euclidean norm on R™). The FEuclidean norm on R™ is the
function ||.||; : R® — R defined by

Ille = /o) = (Zx) | (12)

It measures the distance of the point x to the origin 0 = (0, ...,0).

o=

Properties of the Euclidean norm: Observe that in one dimension, the Euclidean
norm of a real number is the same as the absolute value of that number. In general,
the Euclidean norm satisfies the following properties:

1. Non-negativity: [|x|2 > 0 for all x € R”, with equality if and only if x = 0.
2. Homogeneity: ||A- x|z = |A| - [|x]|2 for all A € R and x € R".
3. Triangle inequality: [|x 4+ y|2 < [|x[|2 + ||y||2 for all x,y € R".

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

15, y) | < 1|2 [y ]]2 (Cauchy-Schwarz)

The Euclidean norm |[|x||2 also corresponds to the length of a vector x. The scalar
product (x,y) measures the angle between the two vectors x and y: if we designate ¢
as the angle between x and y, then

(x,y) = [Ix[[2[[y]|2 cos 6. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., § = £7/2, then (x,y) = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

I+ yll2 = Il + [Iyll2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on R" called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on R™). The Fuclidean distance on R™ is the
function d(.,.): R® x R" — [0, 00) given by

d(x,y) =[x =yl = V(21— ) + ..+ (@0 — ym)*. (1.3)

Properties of the Euclidean distance: The Euclidean distance captures the nat-
ural distance between two points in R™. It satisfies the following three properties:

1. Non-negativity: d(x,y) > 0 for all x,y € R", with equality only when x =y.
2. Symmetry: d(x,y) = d(y, x).
3. Triangle inequality: d(x,y) < d(x,z) + d(y, z).
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1.3 The topology on R”

The Euclidean distance d(x,y) induces a topology on R” which underpins all analytical
considerations on R™. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on R™ are the so-called open balls.

Definition 1.3 (Open Ball). Let a € R® and r > 0. The set
B(a,r) ={x e R":d(x,a) <r}
is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y € R" and x # y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U C R™ is open if for any point x € U there
exists € > 0 such that the open ball B(x,¢) is contained in U.

The empty set () and the space R™ are open. Also, as was already mentioned, any
open ball B(a,r) is an open set.

Example 1.1 (Open Sets in R").
1. If a < b are real numbers then the interval

(a,b) ={x €eR:a <z <b}

is an open set. Indeed, if z € (a,b), simply take r = min{z — a,b — x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“l-dimensional ball” B(z,r) = {y € R : |x —y| < r} is a subset of (a,b). This
proves that (a, b) is an open set.

2. The infinite intervals (a, 00) and (—o0, b) are also open but the intervals

(a,b) ={x €eR:a <z <b} and [a,b] ={r €eR:a <z < b}

are not open sets.
3. The rectangle

(a,b) x (c,d) ={(r,y) ER*:a<x<b, c<y<d}
is an open set.
The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C' C R™ is closed if its complement R"\C' is
open.
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The empty set () and the space R™ are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R*\{(0,0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a € R™ and r > 0. The set

B(a,r) ={x € R":d(x,a) <r}
is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in R").
1. The closed interval

[a,b) ={z € R:a <z <b}

is a closed set, because its complement R\[a,b] = (—00,a) U (b, 00) is an open set.
2. Infinite intervals with closed boundary [a, 00) and (—oo, b] are closed sets.
. Halfopen intervals such as [a,b) or (a,b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

w

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.

o IfU CR™isopen and C C R" is closed then U\C' is open.
o IfC CR™is closed and U C R™ is open then C\U is closed.

Proposition 1.2.

o IfUy,..., U CR"™ are open then Uy U ... U U, and Uy N ... N U, are open.
o IfCY,...,Cy CR"™ are closed then C; U ... UC), and CiN...NC, are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of R” and x
a point in R"™.
(i) We call x an interior point of S if there exists 7 > 0 such that the ball B(x,r)
is contained in S.
(ii) We call x an ezterior point of S if there exists r > 0 such that the ball B(x, )
has empty intersection with S.
(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r» > 0 the ball
B(x,7) has non-empty intersection with S without being entirely contained in

S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
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@
S Boundary Point

Exterior Point

]
Interior Point

Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S.

Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use 05 to denote it.

Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x € R"
with the property that for all » > 0 one has

B(x,r)NS # 0.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

S S S os

Figure 1.2: The interior, closure and boundary sets of a set S.

Proposition 1.3. Let S C R"™. The interior S is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.

Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Properties of closure, interior, and boundary: Suppose S C R"™.
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1. Closure-interior-boundary relationship: Clearly, we have the set inclusions
ScsScs.

Moreover, the closure of S is S plus its boundary, its interior is S minus its
boundary, and the boundary is the closure minus the interior:

S=5\0S S=5U8S, and 3S=25\S.

2. Closure of the interior: The closure of the interior of S is always a subset of
the closure of S,

5C3.
This indicates that the closure of the interior of S may capture some but not
necessarily all of the boundary 95 of S.

3. Interior/closure and complement: Let S¢ = R™\S denote the complement
of S in R". Then

Se=(S)¥ and  5°=(9)°

4. Boundary and complement: The set S and its complement S share the same
boundary, i.e.,

0S = 05°.
Example 1.3 (Closure, Interior, Boundary).

1. The sets (0, 1), [0, 1], [0,1), and (0, 1] all have the same closure, interior, and bound-
ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(z,y) eR?: 2? +¢* < 1} and ((z,9) €R?: 2® + 42 < 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation 2 + y? < 1, the interior is the disc of equation 22 + y* < 1, and the

boundary is the circle of equation z? + y? = 1.
3. The set

U={(z,y) e R*: |y| < 2”}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = U. The closure of U is given by

U={(z,y) eR*: [y < 2”}.

In particular, the closure contains the point (0, 0).
4. The unit ball is open in R™ and is defined by

By =B(0,1) = {x € R" : |x||; < 1}
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Figure 1.3: The origin belongs to the closure of the shaded region.

Its boundary is the sphere 0B; = {x € R" : ||x|]2 = 1}.
5. Let f: R — R be a continuous function. The set

Gi={(z,f(r)) e R* .z € R}

is known as the graph of f and represents a curve in R2. We have G ¢ = 0. Therefore
Gy = 0Gy. The closed graph theorem says that graph G 7 is a closed set in R? if f

is a continuous function.
6. Let B={x € R?:||x||2 <1} and I = [0, 5]. The set S defined by

S=BxI={xeR:a?+a}<1land0<z;<5}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

89S =0B x I U B x dl,
—— ——

By B,

where
E1:{XGR3:x%+x§:1andO<x3<5},
E2:{x€]R3:x%+x§<1andx3€{0,5}}.

Definition 1.11 (Neighborhood of a point in R"). Let x € R” and U C R™. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in R"

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1,2,3,...} for the set of natural numbers.

Definition 1.12 (Sequences in R"). A sequence of elements of R™ is a function k — x;
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that associates to every natural number k € N an element x;, € R". We write (X), oy
to denote a sequence in R™.

Although (x),cy is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(@1,0) e
(Xk)keN = :

(xn,k)keN

Definition 1.13 (Convergent sequence). A sequence (Xj), oy of points in R” converges
to a point x € R" if for every € > 0 there exists N > 1 such that when k > N, then
d (xp,x) < e. In this case we call x the limit of (x}), .y and write
lim x, = x.
k—+o0
Note that not every sequence has a limit, but if a sequence does then this limit is

unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xj), oy converges to x if and only
if the sequence of distances d (xj,x) converges to 0, i.e.,
kginoo Xp =X < kEToo d(xx,x) = 0.
Convergence is also observed coordinate wise: A sequence (X),.y converges to x if

and only if each coordinate of (xj),.y converges to the respective coordinate of x.
More precisely, if

(xl,k>keN X
(Xk)peny = and X =
(xn,k>k;eN Tn
then
lim x, =x <— lim z;,=a; foralli=1,... n.
k] ) )
k—+o0 k—+4o0

Example 1.4 (Convergent and divergent sequences in R™).
1. The sequence (X),cy given by

efk

_ _k_
Xk = Ryl

Vk2—k—k

converges as k — 400 to the limit
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. “k_Q 1 ko . 1 _
because limy_, o ™" = 0, limg_, 1 =L and limg_ 1 o TEE —2.

0
Xk — 1_(_1)k
2

diverges because it diverges in the second coordinate.

2. The sequence (Xy),cy given by

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of R"™.

Properties of limits of sequences. Let (x;),.y and (yx),cy be sequences in R™
and let (Ag)ken be a sequence in R.

1. Addition of sequences: If (x;),.y and (yi)yey both converge then so does
(X1 + Yi) ey and

lim xp + = lim x; + lm .
k——+oc0 k Yk k——+o0 k k—)—l—ooyk

2. Multiplication of sequences: If (x;),.y and (Ag),cy both converge then so
does (A\pXp),cn and

lim A\px; = < lim )\k> . ( lim Xk).
k—+o00 k—4o00 k—+o00
3. Inner product of sequences: If (x;),.y and (y),cy both converge then so

does ((Xi, Y))pen and

kggloo(Xka Yi) = <kggloo Xk» kginoo Yk>'

Definition 1.14 (Cauchy sequences). A sequence (x;), .y is a Cauchy sequence if for
every € > 0 there exists N > 1 such that k,l > N implies d (x,x;) < €.

Theorem 1.1. Every convergent sequence (Xy) wen i a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S C R"™ be a non-empty set and suppose x € 0S5 is a boundary
point of S. Then there exists a sequence of elements in S, X1, Xz, X3,... € S, such that

lim x;, = x.
k—+o0

The following example provides an illustration of the content of Proposition 1.4.
Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,
B(0,5) = {x € R?: ||x|| < 5} = {(=,y) € R? : 2* +3* < 25}.
The boundary of B((0,0),5) is the circle of radius 5 centered at the origin, i.e.,
0B(0,5) = {x € R? : ||x|s = 5} = {(z,y) € R* : 2% + ¢* = 25}.
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Any point x € 0B(0,5) of this circle takes the form

5cosf
X = <5sin9> , for some 6 € [0, 27).

We can define a sequence

k%’fl cos 6
X = 5k y

mSlne

and note that limy_,, . X = X. So we see that x;,X5,X3,... is a sequence of points

inside the open ball B(0,5) converging to the point x on the border .

Proposition 1.5. Let S C R" be a non-empty subset of R" and let (xi),.y be a
sequence of elements in S. If (Xk)keN converges then the limit limy_, . x; = x must
belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle
S =10,1] x [0,1).

This is not a closed set, because the point (%, 1), for example, is in the boundary 95
but not in S itself. Moreover, the sequence

060000

is a sequence of points in the interior of S that converge to the point (%, 1), which is
not part of S, but it is part of the closure of S.

=0

Definition 1.15 (Bounded set). A subset £ C R" is bounded if it is contained in a
ball of finite radius centered at the origin:

E C B(0,R) for some R < 0.

Note that a closed set need not be bounded. For instance, the interval [0, 00) is
closed, but it is not a bounded.

Definition 1.16 (Compact set). A subset C' C R"™ is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of R". An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.

Definition 1.17 (Subsequence). A subsequence of a sequence (X)ren is any sequence
of the form (xy, )ien, where (k;);en is a strictly increasing sequence of positive integers.

If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in R"). Let C' C R"™ be compact. Any
sequence (Xy)gen of elements in C' possesses a convergent subsequence (X, );en Whose
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limit is in C.

Definition 1.18 (Bounded sequences in R™). A sequence (xj), .y is bounded if there
exists a constant C' > 0 such that ||x||, < C for any k € N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence x, = (—1)* is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (X),.y in R™ has a convergent subsequence
(%, )ien-
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Real-valued functions in R"

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on £ C R™). Let E be a non-empty subset of
R™. A function f: F — R that assigns to every element x € E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f: F — R, the domain of f is E, denoted dom(f) or dom f. In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) ={f(x):xe F} ={y € R:3x € £ with f(x) =y}

Example 2.1. Let us find and sketch the domain of the function

vr+y+1

flzy) = @1

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) ={(z,y) ER*: 2 +y+1>0,z#1}.

The inequality x +y+1 > 0, or y > —x — 1, describes the points that lie on or above
the line y = —x — 1, while x # 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

19
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)
vz =1
r+y+1=0 1+
; x
—1 \ :
E dom(f)
~1 \
Figure 2.1: The domain of the function f(x,y) = V(fctyf)rl

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f: £ — R and it is given by

G(f) = {(ch‘x)) 'x € D} C R,

Note that the graph of f is a subset of R™"!. More precisely, the graph is the
hypersurface in R"*! corresponding to the set of all points (1, ..., Ty, Tpe1) € R
that satisfy the equation

Tpr1 = [(T1,...,2p).

Example 2.2. Consider the equation x + y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(z,y) = =z + y, a real-valued function in two variables. By definition, the graph of
f(x,y) consists of points (z,y,2) € R® where z = f(z,y). For f(x,y) = x + y, this
gives the equation of the plane x +y = z. Thus, the graph of f(x,y) = z+y is exactly
the plane in R?® determined by the equation x +y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x + y = z, to what you're learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(z,y) = /1 — 2% — 32, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(z,y) €

R? : 22 + y? < 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0,1] and the graph G(f) = {(z,y,2) € D xR,z = f(z,9)}

coincides with the set of solutions to the equations
P +y*+22=1 and z>0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.



2.2. LEVEL SETS 21

Figure 2.2: Graph of the function f(z,y) = /1 — 22 — y°.

Example 2.4. In physics, the functions f: R®" — R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

k

B

¢:RN\{0} = R, o(x)

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V(x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

2
E:R"xR"—> R, E(p,x) = Ipl; + V(x).

2m

The movement follows the lines at which the energy FE is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets
Definition 2.2 (Level set). Let f: E — R, E C R*(E # (). Given a real number
c € Im(f), we call the set

L(f)={x€D: f(x)=c} = f"'({c})
the level set of f at height c. If ¢ ¢ Im(f), then L.(f) = 0.
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45

level
curve

Sl y) =20

Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the zy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f: R? — R are sometimes also called level
curves (or contour lines). It represents all the points where f has 'height” c¢. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for

equally spaced heights, see Fig. 2.4.

KEY

Precipitation (cm/yr)
[ under2s [l sotot00 M 200to0 250
[ 25t0 50 [ 100t0200 [l Over250

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R?. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-XMB+B7Y -y A3 +XMA+BTXNAYA2) "eXp(-X"2-y 12" 1.2)

RN

\N&;&R“
SN

TN
MR

iy
10K \
£SO
% ““u“:,;,,; N N
5 SN L TR
70K S X SO
7 ERIRSSSSSS W
7 .

s
5577
N
2

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Let f(z,y) = %, whose domain is dom(f) = {(z,y) € R? : y >
2?}. Notice that dom(f) is open and unbounded.

xy—1

25p

fix,y) =

N

m

Level Sets

L1

=N W

® Point (1,1)
——- Envelope x2 =y

Figure 2.6: The figure displays a series of level curves for the function f(z,y) = \;—%
y—x

passing through the point (1,1). As we will explore subsequently, this indicates that
the limit of f(x,y) as (x,y) approaches (1,1) is not well-defined.
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2.3 Limits of functions

Definition 2.3. Let f: F — R with £ C R". We say that f is defined in a neighbor-
hood of xo € R™ if xq is an interior point of F U {xq}. That is, there exists 0 > 0 such
that B(xg,9) € E U {xo}.

In the above definition, it is possible that xo ¢ F. In other words, it is possible
for a function to be defined in a neighborhood of x; € R™ without being defined at xq
itself.

Example 2.6. Consider the function f(x) = ﬁ whose domain equals dom(f) =

{x € R": ||x]| # 0} = R"\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.

Definition 2.4 (Limit of a function). Let E be a subset of R", f: E — R a function
with domain E and assume f is defined in a neighborhood of the point x, € R". We
say that f has a limit [ € R at xy and write

lim f(x)=1,

X—X0

if for all € > 0 there exists § > 0 such that for all x € F,

0<d(x,x0) <0 = |f(x)—=I|<e

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.7. Let f: R? — R be the function defined by

o Ly if (2,y) # (0,0)
f(z,y) {0 if (z,y) = (0,0)

Let’s calculate its limit as (x,y) approaches (0,0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
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tion 2.4. Given the relation 0 < /22 + y?, we have

|z + y| 2% — 2y + 9| z? + |z||y| + y*
|f(z,y)| = e < (lz] + [y]) e
< (2] + |ny2 + |zlly] + v* + 2(|z| — |y])?
~ :L-2_|_y2
_ 2 2
(] + Iyl)ruy2

3.2 3,2
527+ 35y
<2\/!L’27—|—’y22$2_'_;2:3\/m:3”(1‘7y)”2-

This shows that as long as § < £ we have d((z,y),(0,0)) < = |[f(z,y)| < e

According to Definition 2.4, this means exactly that lim, )0 f(z,y) = 0.

Proposition 2.1 (Characterization of limits by sequences). Let E C R" xq € R"
and assume f: E — R defined on a neighbourhood of xq, and | € R". The following
statements are equivalent:

1. limy %, f(x) = 1.
2. limy_o f(Xx) = I for every sequence (Xy)ken in E\{xo} with limy_, X; = Xo.

Properties of limits of functions. Let f and ¢ be two functions defined in a
neighborhood of x¢ and assume the limits limy 5, f(x) and limy_,x, g(X) exist.

1. Linearity: For constants «, 5 € R, we have

Jim (af(x) + Bg(x)) = a( lim f(x)) + 5( lim g(x))

X—X0

2. Products:
g (F0) 90 = (g, £6)) - iy, ),
3. Quotients: If limy ,x, g(x) # 0, then

lim (f(x>> _ limaesng f(x)

X7 - limyg g(x)

9(x)

4. Compositions: Let a = (a,...,a,) € R and b = (by,...,b,) € R" be given. If
limy ,, f(x) exists, and ¢g; : R — R are functions such that lim,_,; g;(z) = a; for
each 7, then

)1(1_{% f(gl(xl)ng(xQ)a s 7gn(xn)> = lim f(X)

x—a

Example 2.8. Let us calculate

. 142y
lim )
(zy)—(-34) 1 — 2y

Since lim, ) (—34) * = —3 and lim, ), (—34) ¥y = 4, it follows from properties 1 and 2
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of limits of functions that

lim  1+ay = 1+( lim x)( lim y> — 14 (-3)-4=—11.
(x,y)—>(—3,4) (x,y)—>(—374) (x,y)—>(—3,4)
Similarly, we obtain lim(, ,)34)1 — 2y = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that
142y lim ) (—3,4) 1 + 2y 11

(zy)—(-34) 1 — zy limy ) (—34) 1 — 2y 13

2.4 Techniques for finding limits of functions

Example 2.9 (The problem with limits in several variables). Let f: R? — R? be a
function in two variables; we would like to determine the limit

lim z,1).
(=,y)—(0,0) fz.y)

A (naive) idea is to compute the two iterated limits:

limlim f(z,y)  or  limlim f(z,y).
If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0,0) is equal to 0. However, this is note true! For example, consider
the function

i (2,y) # (0,0),

fy) = {0, it (z,) = (0,0).

For this particular function, we find that the iterated limits are:

o e my 0o
i Jim, (””’y)_i%}/%muyz_i‘%xuo_o’
o Cewy o 0
},%i%f(x’y)_iﬂi%xz+yz_%,11%0+y2_0

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to ¢ and letting ¢ go to zero, we obtain

: .ttt 11

g /(00 =i =l = o
which yields a different result. Since we can approach (0,0) in two different ways and
obtain different results, it means that the limit does not exist.
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A next idea would be to test all possible directions,
lim f(at, 5t),

with a, 8 € R not both zero (thus covering all lines of equation Sx — ay = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

N\
—>O/

TN

For example, if f: R? — R is defined by

AL, if (2,y) # (0,0),

flz,y) = {07 if (z,y) = (0,0).

then for any «, f € R, we have
) ) 0562753
Hn flat, 5t) =l g
If « =0, then § # 0 and we obtain 0. Otherwise,
aB?t 0

g S, Bt) =l o i = av0 -

We obtain 0 in all directions. However,

Again, this means that the limit does not exist.
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2.4.1 The squeeze theorem

Theorem 2.1 (Squeeze theorem - théoreme des gendarmes). Let £ C R"™, and func-
tions f,g,h : E — R be defined on a neighborhood of x, € R". If

Jimy, 9(x) = lim hlx) =1
and there exists € > 0 such that for all x € F,

0<d(x,x9) <e = g(x) < f(x) < h(x)
then

i, ) =1

Example 2.10. Consider f: R*\{(0,0)} — R defined by

oy
f(z,y) = RORTE
Let’s discuss the limit
lim z,Y).
(z,9)—(0,0) f(@.y)
We can estimate
ohy? ey
0< flz,y) = =y’

X
1'4 + y12 1.4

So if we define
g(z,y)=0 and  h(z,y) =y’

then g(z,y) < f(z,y) < h(z,y). Since lim, ) 0.0 9(2,y) = lim( )00 Mz, y) =0,
it follows from the Squeeze Theorem that lim, ) 0,0) f(2,y) = 0.

2.4.2 Using Polar coordinates

Polar coordinates are useful when given a function in two variables involving terms
like 2% + 32, representing the distance from the origin, or when the function behaves
similarly along all directions (i.e., has radial symmetry). This simplifies the analysis
by converting the problem into one of radial distance and angular symmetry, making
it easier to evaluate limits as the distance from the origin approaches zero.

The following version of the squeeze theorem involving polar coordinates allows
us to bound a function in terms of its distance from the origin, making it easier to
evaluate limits as the distance approaches zero.

Theorem 2.2 (Squeeze theorem in polar coordinates). Let E C R? and (z¢,yo) € R>.
Assume f: E'— R is a function that is defined in the neighborhood of (x¢, o) and let
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[ € R. Then,
lim  f(z,y) =1

(2,y)—=(20,y0)
if and only if there exists € > 0 and a function ¥ : (0,e) — [0, 00) such that
(1) lim,_,o+ ¥(r) = 0, and
(ii) for all § € [0,27) we have |f(zo+ rcosf,yo+ rsind) — | < ()

Example 2.11. Consider f: R*\{(0,0)} — R defined by

2

-y
xr,y) = )
f( y) xQ%—yg
Let’s discuss the limit
im T
uwemof( JY)-

We switch to polar coordinates and get

r3 cos? fsin @

f(rcosf,rsinfg) = —
r2cos?26 + r2sinz 0
rcos? fsiné

T .5 -
cos20 +rz2sinz 0

Thus,
7 cos® 0| sin 0| 1 cos® 0| sin 0|

1.5 N
cos?2 0 + r2 sinz 6 cos? 0

|f(rcos@,rsinf)| = =r|sinf| <r
Taking [ = 0 and ¢ (r) = r, we see that the hypothesis of the squeeze theorem in polar
coordinates is satisfied, and conclude that

lim  f(z,y) =0.

(z,y)—(0,0)

2.4.3 Using Taylor’s theorem

Taylor’s theorem (which you have learned in Analysis I) can be useful to find limits
because it approximates a function near a point by a polynomial, simplifying the
analysis before applying the squeeze theorem. For convenience, let us quickly recall
the statement of Taylor’s theorem.

Theorem 2.3 (Taylor’s theorem — single variable case). Let k € N. Suppose I C R
is an open interval and f: I — R is a function of class C*(I). Then for any a € I we
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have

0 (g
f@) =3 e a4 )

=1 J

where r(x) is an “error” term satisfying lim, ., % = 0.

Example 2.12. Calculate the following limits if they exist:
(a) lim x2+ln(1+y2)
({E,y)—>(0,0) \/m

. @)
(b) lim(zy)-00) 257

(a) The first-order expansion of In(1 + ) around a = 0 is

In(1+x) =z +r(z)

where lim,_,q ”acﬂ = 0. We obtain

2 11 2 2 2 2
lim v? +In(1+y%) lim x* +y* +r1(y?)

@y)—00 22+ y2  @y—00  JZ+y?

%+ y? r1(y?)
= lim ——Z_4+ lim —=2L_=040=
(z.9)—=(0,0) /T2 + y°  (29)—(0,0) /22 + y?

The second limit is zero because, for (x,y) # (0,0),

_\Tl(y2)\ < r1(y?) < 1 (y°)]

| T Va2 Ty

with

r(y?) _ iyl - ()]
(@y)—0,0) |yl (@y)—00) 7 (29)—00) |y?]

By the squeeze theorem, it follows that

. 7“1(92) _
hm —— = 0
(2,9)—(0,0) /22 + 32

(b) The first-order expansion of e around a = 0 is
e =1+z+r ()
where lim,_,q ”xﬂ = 0. We obtain
1—e” , 1—1—2%—r(2?) _ —x® —r(2?)

lim ——= im im
(z,y)—(0,0) 22 + Y2 (2,4)—(0,0) 2 + 92 (z,9)—(0,0)  x2 4 y?
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Now, for (z,y) # (0,0),

P @] =2t (@) 2P+ ()]
|22 T |22

with

3 3 3 3
lim —\x |+|;’1(x ) = lim @ + lim |T1(f ) =0+0=
(,9)—(0,0) |22 (z.9)—(0,0) |22 (zy)—(0,0) |22

The squeeze theorem therefore ensures that

—x3 —ry(2?)

im =0.
(zy)—=(00) 224 y?

2.4.4 Using change of variables

The following proposition enables us to convert limits in two variables into limits in a
single variable.

Proposition 2.2 (Composition with Functions of a Single Variable). Let E C R?
and let g: E — R be defined in a neighborhood of (x¢,vy) € R%. Let I C R be such
that I C g(E) and let ¢: I — R be defined in a neighborhood of | € R. Finally, let
f: E — R be defined by f(z,y) = ¢(g(x,y)). If

lim  g(z,y) =1 and lim ¢(t) exists,
(z,y)=(z0,y0) t—1

then

lim x,y) = lim ¢(t).
(rvy)%(ro,yo)f< v) t=l o)

Example 2.13. Let f: R*\{(0,0)} — R be defined by

tan (322 + o2
f(mﬂy):3<22)'
ety

We analyze the limit

lim x,1).
(z,y)—(0,0) fz.y)

If we define g(z,y) = 322 + y?, then by properties of limits we have

2 2
. o . . _ 2.2 2 _
lim g(x,y) = 3( hmo,o) x) + (( hmo,O) y) =3-0°40"=0.

(z,y)—(0,0) (z,y)—( z,y)—(

Define ¢: R\{0} — R by
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Then we have f(x,y) = ¢(g(x,y)). Hence, in light of Proposition 2.2, we have

tan(3z? + y?) i tan(t)
(@y)—(00) 32 + y2 =0 ¢t
Now,
1
lim tan(t) L'Hopital's Rule 1. cos?(]) _ 4
50t =0 1 '
Thus,

lim z,y) = 1.
(z,y)—>(0,0)f( v)

2

Figure 2.7: Graph of the function f(z,y) = zyIn(|z| + |y|).

Example 2.14. Let us demonstrate that the limit of the function f: R? — R defined
by

_Jryn(lz[ +y]) if (z,y) # (0,0)
fe.y) = {o if (,y) = (0,0)

is zero as (x,y) approaches (0,0) (see Fig. 2.7). Note that for every point (z,y) with
0 < V2?2 +y? < 1 we have |zy| < |z| + |y|. This implies that for any such (x,y) we
have the estimate

0 < [f(z, )l = lzyn(le] + [yD] < ([ + [yD[In(lz] + ly])]-

So if we define

g9(z,y) = =(l=[ + [yDIn(jz] + [y)]  and  A(z,y) = (jz| + )] In(|z] + [y])]

then we see that

0<y2?+y?2 <1 = g(z,y) < f(z,y) < h(z,y).
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Substituting ¢ for |z| + |y|, it follows from Proposition 2.2 that:

li 1 = lim tlnt =10
L dim (e + o) o] + )] = it =0,
where we used the fact lim;_,oy tInt = 0, which can be verified using L’Ho6pital’s Rule.
In other words lim gz y)— 0,0y 9(2,y) = lim(g4)—(0,0) A(z,y) = 0. Invoking the Squeeze
Theorem, we conclude that lim, )00 f(2,y) = 0.

2.4.5 Testing along polynomial paths

Testing paths of the form (t%,¢”) is useful for evaluating limits of functions in two
variables because these paths allow us to explore how the function behaves along
different directions approaching the origin. By adjusting the exponents a and [, we
can test a variety of trajectories that the function might take, revealing whether the
limit depends on the direction of approach.

Example 2.15. Let f: R*\{(0,0)} — R be defined by

w3eyP
f(x,y) = g
Our goal is to determine the limit
lim x,1).
(z,y)—(0,0) fz.y)

First, let us test all linear paths by considering
lim f(at, 5t),
with «, 8 € R not both zero. In this case, we get

33346 32342
: : a7t _acpit
%l_{% f(at, 5t) - ,155% atth 4 [12¢12 - %l_r,% at + p12¢8 =0
We see that all linear paths yield the same limit. Therefore, to demonstrate that the
limit does not exist, we must consider non-linear paths.

When dealing with a denominator containing different powers of x and y, a good
approach is to examine paths of the form (t®,t%) for various values of a, 3 € (0, 00).
This gives

5 430433
by f(#7,17) = i e
First, we can take « = 8 = 1. In this case we have
6 t2

lim £(,¢) = lim = 0.

t—0 4 4 ¢12 :%l—{%letﬁi

Next, we choose o and (3 so that the powers appearing in the denominator match. For
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us, this means we want to find a and  such that
4o = 12p.
For example, this is achieved by taking o = 3 and § = 1. Then,

3 th? 1
) = e =y
Since « = =1 and a = 3, = 1 yield different results, we conclude that the limit
does not exist.

2.5 Continuity at a Point

The purpose of this section is to introduce and discuss continuous functions in several
variables.

Definition 2.5 (Continuous function at a point). Let £ C R™ and let X, be an interior
point of E. A function f: E — R is said to be continuous at xq if

Aim f(x) = f(xo).
Definition 2.6 (1% equivalent definition). Let x( be an interior point of E. A function
f: E — R is continuous at x if and only if, for every real number € > 0, there exists
a real number ¢ > 0 such that for all x € F|

d(x,x9) <0 = |f(x)— f(x0)|< €.

Definition 2.7 (2" equivalent definition). Let xq be an interior point of E. A function
f: E — R is continuous at X if and only if, for every sequence (ay)gen of elements of
E we have
li = li = )

dm =X = lIm fla) = flxo)
Remark 2.1. It is very tempting to believe that if a function is continuous in ev-
ery coordinate then the function is continuous. However, this is NOT TRUE! As a
counterexample, consider the function

Sy if (2,y) £ (0,0)

Ja,y) = {0 i (2,) = (0,0)

Let f1, fo: R — R denote the two functions obtained by restricting f(x,y) to the first
and second coordinate at the point (0,0), that is, fi(z) = f(x,0) and fo(y) = £(0,y).
Then fi(x) and f5(y) both are continuous at z = 0 and y = 0 respectively. Nonetheless,
we have already seen in Example 2.9 that the limit of f(z,y) as (x,y) approaches (0, 0)
does not exist, which means that the function f(z,y) (as a function in two variables)
is not continuous at the point (0, 0).

Properties of continuity. Let f and g be two functions from £ C R" to R that are
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continuous at a point xy € R”. Then:

1. Linearity: For any o, 8 € R, the function af 4+ B¢ is continuous at xg;

2. Products: The product function fg is continuous at xg;

3. Quotients: If g(x¢) # 0 and g(x) # 0 for all x € E then the quotient Jgf is
continuous at Xg;

4. Compositions: Let A be a subset of R™ and let

g1, .9 A—=R

be functions continuous at the point a = (as, . ..,a,). On the other hand, let B be
a subset of R? containing

{(1(¥)s-- s 90(y)) 1y € A}

and f: B — R a function continuous at the point b = (gi(a), ..., gy(a)). Then the
function F': A — R defined by

F(yl,---7yn) :f(gl<y17'--7yn)7'”7gp(y17-~7yn))

is continuous at the point a = (ay,...,a,).

Example 2.16. Let us demonstrate the usefulness of the properties of continuity by
showing that the function F: R? — R given by F(z,y) = —sin(x)y is continuous at
the point (0,0). To do this, consider the three auxiliary functions f: R*> — R and
g1, g2: R — R defined respectively by

flz,y) =2y,  qi(r,y)=—sin(z), and  g(z,y) =y.

Since both ¢i(x,y) and go(z,y) are continuous at (0,0) and f(z,y) is continuous
at (g1(0,0),g2(0,0)) = (0,0), we can conclude that F(z,y) = f(¢1(x,y), g2(x,y)) is
continuous at the point (0,0) (See Fig. 2.8).

Figure 2.8: Graph of the function F(z,y) = — sin(z)y.
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2.6 Continuity in a Region

Definition 2.8 (Continuous function in a Region). Let E be a non-empty subset of
R"™. A function f: E — R is continuous on E if for every xq € E and every real
number € > 0 there exists a real number § > 0 such that for all x € E,

d(x,x0) <0 = [f(x) — f(xo)|< €.

Definition 2.9 (Equivalent definition). Let E be a non-empty subset of R™. A func-
tion f: E' — R is continuous on E if for every sequence (ay)iey of elements of F we
have

Jmoa=xo = i fa) = f0a)

Remark 2.2. If ' is an open set then f: £ — R is continuous on E if and only if it
is continuous at every point in £.

Example 2.17. Let us demonstrate that the function f: R? — R defined by

sl i 4
Y ifz=0

f(z,y) ={

is continuous on R? (see Fig. 2.9).

Figure 2.9: Graph of f(z,y) = w for x # 0.

Define the function h : R — R by

sin(s) if g £
hs)={ * 157
1 ifs=0

It is continuous for all s # 0 and, as lim,_,o h(s) =1 = h(0), it is also continuous at 0.
This is useful because we have f(z,y) = h(xy)y for all (z,y) € R2. Since the functions

a(z,y)=zy and  b(z,y) =y
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are continuous at every point in R? and f(z,y) = h(xy)y = a(h(a(x,y)),b(x,y)) for all
(z,y) € R?, it follows from the properties of continuity that f is continuous at every
point in R2.

2.7 Extreme Value Theorem and Intermediate Value
Theorem

Definition 2.10 (Maximum and minimum). Let £ C R™ be non-empty and f a
function from E to R. A real number M satisfying

o f(x) < M for every element x in E, and
is called the mazimum of the function f on E and is denoted by maxyep f(x). If
Xo € E is such that f(xg) = M then we say that the function f reaches its maximum
at the point xq. Similarly, a real number m satisfying

e f(x) = m for every element x in F, and

. m e m(f),
is called the minimum of the function f on F and is denoted by mingep f(x). If
xg € E is such that f(x¢) = M then we say that the function f reaches its minimum
at the point x.

Proposition 2.3 (Extreme value theorem). Let E be a compact subset of R™ and
f: E — R a continuous function. Then f has a minimum min,cg f(x) and a maximum
maxyep f(x) on E.






Chapter 3

Partial derivatives and
differentiability

3.1 Partial Derivatives

Recall that given a differentiable function in a single variable f: R — R, the derivative
of f at the point a € R is defined as

B R () R L N (O e (0}

N dx t—0 t r—a T —a

f'(a)

We are already familiar with several different ways of thinking about the derivative of
a function:

o The derivative of a function f quantifies the rate of change of the function’s
output value with respect to its input value. For example, if the derivative
of f at a point a is a ‘large’ positive number then a positive change close to
a will result in a ‘proportionately large’ positive change in the output value.
Conversely, if the derivative of f at a point a is a ‘small’ negative number then a
positive change close to a will result in a ‘proportionately small’ negative change
in the output value.

o The derivative f'(a) of a function f at a point a equals the slope of the tangent
line to the graph of the function at that point. Moreover, the tangent line is the
best linear approximation of the function near that input value.

The goal of this chapter is to extend derivatives to functions in several variables.
While functions in one variable have only one derivative, functions in several variables
have multiple derivatives, one for each variable. These are called the partial derivatives.

Let

1 0 0
0 1 0
€ = 0 y €2 = 0 ) ey G =
: : 0
0 0 1

39
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denote the vectors of the canonical basis of R”. Note that for any element x =
(1,...,2,) € R" we have x = Y_}_, xe;, where x, = (x,ey), for k=1,...,n.

Definition 3.1 (Partial derivatives). Suppose E C R" is a set and a = (ay,...,a,)
is an interior point of E. Let f: E — R be a real-valued function in the variables

(x1,...,2,). The partial derivative of f at the point a with respect to the variable xy
(the k-th variable) is defined as
t —
oy, t—0 t

whenever this limit exists. If this limit does not exist then we say that the partial
derivative of f at a with respect to z, does not exist.

Intuitively, the partial derivative % is the derivative of f(x1,...,x,) with respect
to the variable x;, while all the other variables remain constant. We also use the
notation

mea%@;

or if the real variables of f are explicitly given, say f(z,y, 2), then we write

of

ox
0
Dyf(‘f,y,Z) = a‘:]yc(ﬂf,y,z>

D:Ef(x7y7 Z) = (x7y7 Z)

D.f(z,1,2) = L (2.9, 2).

Remark 3.1. The partial derivative %(a) exists if and only if the function gx(t) =
f (a+ tey) is differentiable at ¢t = 0, because
of fla+ter) — f(a) k(1) — 91(0)

. . g
(@) =l : e e A (ORI CRY

This means that %(a) corresponds to the slope of the tangent line pointing in the
direction of the canonical vector e;. In the case of two variables, Fig. 3.1 below provides
an illustration of the partial derivatives as the slope of tangent lines in the x-direction
and in the y-direction.
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tangent line in y direction

with slope %(550, Yo)

tangent line in x direction

with slope %(IO, Y0)

(z0, Yo, f(x0,Y0))

(o, yo,.f(xo,yo))

(z0, Yo, 0)

Figure 3.1: The gray surface is the graph of the function f(z,y) and contains the point
(20, Yo, f(x0,y0)). In the left figure, the plane y = yy (pink plane) intersects the graph
of f(z,y) in a curve. The tangent line to this curve at the point (zo, yo, (2o, %)) (pink
line) has slope equal to the partial derivative of f(z,y) with respect to the variable
at the point (z¢, o). The right figure depicts the tangent line (green line) to the curve
that is the intersection of the graph of f(x,y) with the plane x = zy (green plane) at
the point (o, Yo, f (o, ¥0)), whose slope is the partial derivative of f(z,y) with respect
to the variable y at the point (xg, yo).

Example 3.1. Consider a pot filled with water being heated on top of a stove
(see Fig. 3.2). Let us think of the pot as a cylinder in R3 given by

D={(z,y,2) eR: 2> +9y* <1, 0 <z < 1}.

Suppose at time t the temperature of the water at the position (z,y, z) is given by the

equation
80 z 2.2
T t)=(100— —— |- (1—= ) -e ™ 7Y,
(7,9, 2,1) ( 1+t) ( 2) ‘

Then T is a function in 4 variables (3 space variables and 1 time variable) with domain
dom(7T") = D x [0,00). We can calculate its partial derivatives as

T
it~ e = (= 2] 1=3)- -
oT 80 - s
D/T(z,y,2,t) = Fy(x,y,z,t) = (100— 1+t) : ( — 2) (=2y) - e
oT 80 1 "
= — — - . — — L XY
D.T(z,y,2,t) P (x,y,z2,1) <100 T t) ( 2) e :

oT 80 ~ e
DtT(%y,Z,t):a(x,y,z,t): (1+t)2‘(1_2)'6 vt
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What do these partial derivatives mean? For example, T;(z,y, z,t) describes the rate
of change in temperature at a stationary point (z,y, z) as time ¢ changes. Since T} is
always positive, we see that in every point (z,y, z) the temperature is increasing as
the time ¢ increases. Conversely, due to the sign of T, T,,T., we see that for a fixed
time t, the temperature is decreasing as we move away from the origin and towards
the boundary of the cylinder, which makes sense because the water at the edge of the
pot should be cooler than the water in the middle.

Figure 3.2: A pot of water with heat being applied from the bottom.

Definition 3.2 (Gradient vector). Let £ C R™ be an open set, let f: £ — R be a

function and suppose all partial derivatives %(a), o ;Tf(a) of f at the point a € F

exist. Then

of of 1
= = e R™™
Vf(a) = emud f(a) = (37 @ (@) R
is called the gradient of f at a. If at least one of the partial derivatives aa—zfl(a), e %(a)

of f at the point a does not exist then we say that the gradient of f at a does not
exist.

Remark 3.2. The gradient V f(a) can also be written as a linear combination using
the canonical vectors eq, ..., e,,

n

Vi) = ,; Dy f(a)e].

Therefore Dy.f(a) = 2L (a) = (Vf(a),e;) forall k =1,2,... n.

oxy,

3.2 Directional Derivatives

Definition 3.3 (Directional derivatives). Let E C R™ be an open set, f: E — R a
real-valued function, and v € R™\{0}. The directional derivative of f along the vector
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v at the point a € E is defined as

O )t L) T a)

t—0 t

wherever this limit exists. If this limit does not exist then we say that the directional
derivative of f along v at the point a does not exist. When v is a unit vector (which
means ||v||s = 1), it is also called the derivative in the direction v.

Note that the partial derivative with respect to the variable z; coincides with the
directional derivative along the vector ey, that is,

of

Oy

(a) = VEkf(a)'

Properties of directional/partial derivatives: Many of the familiar properties
of the ordinary derivative hold for the directional derivative. In particular, if Vy f(a)
and Vyg(a) exist then

1. Linearity: For all a, 8 € R we have

Vy(af + Pg)(a) = a(Vvf(a)) + B(Vvg(a)).

2. Product rule (or Leibniz’s rule):
Vi(f-9)(@) = g(a)- Vyf(a) + f(a) - Vyg(a).
3. Quotient rule: If g(a) # 0 then

f _g(a)-Vyf(a) — f(a) - Vyg(a)
vv< )(a) g(a)? '

9

3.3 Differentiability at a Point

Recall from linear algebra that a linear map from R™ to R is a function L: R* — R
that satisfies linearity, meaning it preserves addition and scalar multiplication: for all
x,y € R" and all o, f € R, we have

L(ax + fy) = aL(x) + SL(y).

Note that any linear map L can always be represented as L(x) = (w, x), where w € R™
is a fixed vector and (., .) denotes the standard inner product on R" defined in (1.1).

Definition 3.4 (Differentiability at a point). Let E be a non-empty open subset of
R™. A function f: F — R is differentiable at the point a € E if there exists a linear
map L,: R™ — R such that

| @tb) — (@) - La(h)

=0.
h—0 |hl[2

In this case, the linear map L,: R™ — R is called the differential of f at the point a.
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Theorem 3.1 (Fundamental theorem). Suppose f: E — R is a function defined on
a set E C R", and a is an interior point of E. If f is differentiable at a then the
following statements hold:

(i) f is continuous at a.

(ii) All partial derivatives of f at the point a exist, the gradient vector V f(a) of f
at the point a exists, and the differential L,: R™ — R of f at the point a is the
same as scalar multiplication by the gradient vector, i.e.,

L,(v)=Vf(a)-v, Vv e R".
(iii) All directional derivatives of f at the point a exist and are given by
Vef(a) = La(v) =V f(a)-v, Vv e R"™
(iv) For all x € E we have
fx) = fla)+Vf(@)- (x—a)+r(x),
where 11 is an “error” term satisfying

lim X)) ) =0.
x>a |x — a2

The function

t(x) = f(a)+Vf(a)- (x —a)

is called the linearization (or linear approximation) of f at the point a.

(v) The function f(x) = f(z1,...,x,) increases most rapidly in the direction V f,
and decreases most rapidly in the direction —V f. Any vector v € R™\{0}
orthogonal to V f is a direction of zero change.

MY Contour didgram for { (xy)

| 7§ - Ul = cos (o)1 V4l 1T}

= cos(8)| v¢)

. |9€-@| i largest when
x tos (@ =1 | or equivalently, when

\ 0= 0.
‘;\f,\vf V... slepest increase
£l =k ~vf L. sheepest decreage

direchons of no change

Figure 3.3: The gradient vector V f gives the direction of steepest incline, while the
rate of change in the direction of the contour lines equals 0.
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Remark 3.3. The gradient is perpendicular to the level sets of a function.

Theorem 3.2 (Sufficient conditions for differentiability). Let £ C R", f: E — R,
and suppose a is an interior point of E. If there exists 6 > 0 such that every partial
derivative (987{; of f exists at every point in the open ball B(a,d) and %(ml, ce, Tg) IS
a continuous function at the point a, then f is differentiable at the point a.

Example 3.2. Consider n =2, F =R? f: R*> - R, f(z,y) = 2* — y?. We have:

of B
876(%2@ = 2z,
af B
(‘Ty@’y)_ 2y,

Vi(z,y) = (2z, —2y).

Example 3.3. Let = {(z,y) € R? : x > 0} and f(z,y) = €¥1°6%. Then

g(gj ) _ yeyloga:
ax ay - T )
of

7($ay) = eylog:c ' lng?

y

ylogx
Vi(x,y) = (ye,eylogx : 10gw> .
x

3.4 Tangent (Hyper)Planes

Recall that a straight line is called a tangent line to the curve y = f(z) at a point
x = a if the line passes through the point (a, f(a)) on the curve and has slope f’(a),
where f'(x) is the 1°* derivative of f. The equation of the tangent line is then given

by
y = f(a) + f'(a)(z —a).

The equation of the tangent line is closely related to Taylor’s theorem, which says that
the 1%*-order Taylor expansion of f is given by

flx) =" fla)+ f(a)(z —a)+ r(z)

o =,

|z—al
A similar concept applies to multivariate functions in n-dimensional Euclidean
space. As we have seen (cf. part (iv) of Theorem 3.1) if f(z1,...,2,) is a function in

where 71(x) is an “error” term that satisfies lim,_,,
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n variables that is differentiable at a point a € R™ then
f(x)=f(a)+ La(x —a) +7i(x) = fla)+Vf(a) - (x—a)+ r(x) (3.2)

where r1(x) is an “error” term satisfying limy_,, ﬁ =0.

Definition 3.5 (Tangent hyperplane). Let E C R™ and f: E — R, and assume that
a is an interior point of E. Suppose f is differentiable at a, and consider the linear
approximation of f at a given by

t(x) = f(a) + Vf(a)- (x —a).

The graph of t(x) is called the tangent hyperplane of f at a. That is, the tangent
hyperplane consists of all points (xy, ..., %, Tn11) € R™™! satisfying the equation

Tpr1 = t(xy, ..., ).

This equation is commonly referred to as the equation of the tangent hyperplane.

When n = 1, the tangent hyperplane is the same as the tangent line, and when
n = 2 the tangent hyperplane is usually just called the tangent plane (see Fig. 3.4).

Tangent plane at P

z2=f(x,y)

X

Figure 3.4: Tangent plane to a function z = f(z,y) at P = (xo, Yo, f(x0, %))

Example 3.4. Let us find the equation of the tangent plane to the elliptic paraboloid
z=22"+1y+1

at the point (1, —1,4). This elliptic paraboloid is the graph of the function f(z,y) =
202 + 9% + 1. The partial derivatives of f form the gradient given by

Vf(x,y) = (4z,2y).
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We can now write down the linear approximation of f(z,y) at the point (1, —1) as

) = F(1,-1) + VF(1,—1) - ((y) - (_11)> _

_4+(4,—2)-<§:>

=4+4(x—-1)—-2(y+1)
=4r — 2y — 2.

Thus, the equation of the tangent plane to the elliptic paraboloid at the point (1, —1,4)
is

z=4xr — 2y — 2.

3.5 Functions of Class C*

Definition 3.6 (Differentiability in a region). Let £ C R" be an open set and f: E —
R a function on E. If f is differentiable at every point a € E then we say that f is
differentiable on E.

Definition 3.7 (Functions of Class C'). Let £ C R" be an open set. A function
f: E — R is said to be of class C'(F) if all its partial derivatives exist and are
continuous at each point x € F.

The existence and continuity of the partial derivatives at every point in E implies
the differentiability of the function at every point in E (see Theorem 3.2). It follows
that any function of class C'(E) is differentiable on E.

Proposition 3.1. Let E C R™ be open and f: E — R a function of class C'(E).
Then f is differentiable on E.

Example 3.5. Consider the function f: R? — R given by
it (2,y) £ (0,0)
— :E2+y2 1 Y y )
ren={ 7 Gn o
We have already studied this function in Example 2.9 and Remark 2.1.

« For (z,y) # (0,0), we can calculate the partial derivatives as

af Y 222y
%(377y> = :c2+y2 - <$2+y2)2
af x 21>
@(%3» = 22 + 12 B <x2+y2>2-
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« At the point (0,0) we can use the definition of partial derivatives and find
h,0) — £(0,0 0
0 = F0,0) 0

of

%(0’ )_111%0 h flzaoh_o
of _ o SO0,0) = F(0,0) 0
oy O I im0

This shows that the partial derivatives 2 b L and 8f exist for every point in R2. Nonethe-
less, this function is not differentiable at the pomt (0,0). Indeed, we have seen in
Example 2.9 that this function is not even continuous at the point (0, 0), so according
to part (i) of Theorem 3.1, it cannot be differentiable at that point. This example
illustrates that even if a function is differentiable in every coordinate, this does not
mean that it is differentiable. In conclusion, the function f is of class C*(R?\{(0,0)}).

3.6 Second Order Partial Derivatives

The partial derivatives g g R, aaf are also referred to as “partial derivatives of order

17 or “first order partial derivatives”. Let us now define the second order partial
derivatives.

Definition 3.8 (Partial derivatives of second order). Let F C R" be an open set and
1 <k <n Assume f: E — R is a function whose partial derivative 887]; exists for

every point in F. For 1 < ¢ < n, if the partial derivative of g—;; with respect to the
variable x; at the point a exists, then we obtain a second order partial derivative of f

with respect to z; and x; at a denoted by 61826]; - (a). If this derivative exists for every

EF— R.

a € F, it defines a function a

f af . If i # k, then there

are generally two mixed second-order partial derlvatlves.

0 f 0 f
and :
These derivatives are not necessarily equal since the order of differentiation can affect

the result. However, as the following theorem states, they are equal if an additional
continuity assumption is satisfied.

Theorem 3.3 (Schwarz’s theorem). Let E C R™ be open and let f: E — R be a
function defined on E. For any point a € E and indices i,k € {1,...,n}, suppose the

mixed partial derivatives Pf  and 2L exist in E and are continuous at a. Then,

2 ) Ox;0xy, O0x0x;
0 0
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Definition 3.9. The n x n matrix

0?2 0?2
8x1<9f:1:1 (a) t aaznafxl (a>
Hess(f)(a) = : . :
0? 0?
axlaj;n (a) t 8:1:n<9fxn (a>

is called the Hessian matriz of f at the point a, written Hess(f)(a).

If all the partial derivatives of order 2 exist and are continuous at a then by
Schwarz’s theorem the Hessian matrix is a symmetric matrix, i.e., Hess(f)(a) =
Hess(f)(a)?. In this case we can use the Hessian matrix to form the second order
expansion of a differentiable function, given by

(3.3)

where 75(x) is an “error” term satisfying limy ., ﬁ =0.
2

The quadratic approximation is a polynomial of degree 2 in n variables called the
Taylor polynomial of order 2 at the point a and it is usually denoted by Ps(z,y).

Example 3.6. Let us find the Taylor polynomial of order 2 for the function f(x,y) =
sin(2z + y) + 3 cos(x + y) at the point (0,0). Recall the formula for computing the
quadratic approximation of a function in two variables at the point (0,0) is

Py(z,y) = £(0,0) + V£(0,0) - ( ’ ) + ;@;,y). Hess (£)(0,0) - ( ’ ) |

To use this formula, we have to find the gradient vector and the Hessian matrix
first. We have

Vf(z,y) = (2cos(2x + y) — 3sin(x + y), cos(2z + y) — 3sin(z + y))
which gives
Vf(0,0) =(2,1).
Moreover,

[ —4sin(2z 4+ y) —3cos(z +y) —2sin(2x +y) — 3cos(z +y)
Hess(f)(z,y) = ( —2sin(2z +y) — 3cos(z +y) —sin(2z +y) — 3cos(z + y) )

and hence

Hess(f)(0,0) = < BN ) |
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It follows that

Pg(x,y>:3+(271>-<§>+;(x’y>'<:g j)(i)

3 3
:3+2x+y—§x2—3xy—§y2.

This is a degree 2 polynomial in 2 variables.

3.7 Higher Order Partial Derivatives

Definition 3.10 (Partial derivatives of higher orders). Consider a function f: £ — R

defined on an open set ¥ C R". For a sequence of indices iy,...,7, with each 7; €

{1,...,n} and for p > 3, assume that the (p — 1)-th order partial derivative of f,

denoted as #, exists in . Then, the p-th order partial derivative of f with
A ip—1

respect to these indices, if it exists, is given by:

of 9 orf
Oz, ... 0y B Oxi, \Oviy ... 0xi, , )

of

6381'1)...84131'1

This derivative is denoted as (a) for any point a € E. If such a derivative

exists for every a € F| it defines a function % E— R
ip--OTiy

Example 3.7. Consider a function f: R? — R defined by f(x,y) = x3y?>. We
calculate its higher-order partial derivatives as follows:

af

O . = a2y,

L e = L (aety?) = by
;;gx(x, y) = %(39&@2) = 6a%y,
) = 26 = 120,
P 9 )

%(z,y) = %(635?/2) = 6y”.

This illustrates the computation of first, second, and third-order partial derivatives for
a function of two variables.

Remark 3.4. Explicit computations also give ;%afy(x,y) = 62y = a(fafx (x,y) and
8£Jax (x,y) = 122y = 83(?; s(x,y), demonstrating the symmetry in mixed partial

derivatives.
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3.8 Functions of class C?P

Definition 3.11 (Functions of class C?). Let E be an open subset of R” and p a
positive integer. A function f: E — R is said to be of class CP(FE) if all its partial
derivatives of order p exist and are continuous at every point in FE.

A function f: E — R is said to be of class C*°(E) if, for every integer p > 0, it is of
class CP(FE).

Proposition 3.2. If f: E — R is a function of class CP(F), then it is also of class
CK(E) for all 0 < k < p.

Example 3.8. Consider the function f: R?> — R defined by f(z,y) = xsin(zy).
Then, for every (z,y) € R?, we have:

B .

aﬁ(af, y) = sin(zy) + zy cos(zy),

gg(g;, y) = a* cos(zy),

0? )

axé(‘”’ y) = 2y cos(zy) — xy’ sin(zy),

% f o B .
8x8y(x7‘y) - ayax (I‘,y) =2x COS(LUy) - ysm(:(:y),
0? )

s () = —a*sinay).

Figure 3.5: f(z,y) = xsin(zy)

The following is a corollary of Schwarz’s theorem.

Corollary 3.1. Let f: E — R be a function of class C?(E) and let k be an integer
between 1 and p. If two ordered k-tuples (iy,--- ,ix) and (j1,- - ,jx) are equal up to
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a permutation, then, for any element a = (ay,...,a,) of E, we have

)= O ()
axil...axik ay, , An ) = ax‘jl."axjk as, , Q).

3.9 Taylor’s Theorem for Multivariable Functions

The following is a special (but often very useful) case of Taylor’s theorem for multi-
variate functions.

Theorem 3.4 (Taylor’s Formula — special case). Let E C R™ be open and f: E — R
a function of class CP™'(E). Then for every a € E there exists a real number ¢ > 0
such that B(a,2d) C E and, for every element x € B(a, ), one can associate a number
0 < 0 < 1 so that the following equality (known as Taylor’s formula) holds:

1
(p+ 1)V
where F': (—2,2) — R is the function defined by F(t) = f(a+ t(x — a)).

f(x)=F(0)+ F'(0)+...+ F(”)(O)pl! + FP+D(p)

To state Taylor’s theorem for multivariate functions in full generality, we first
need to introduce the multi-index notation. Given an n-tuple of non-negative integers
a=(o,...,q,) and a point x € R, let

lal =1+ ... 4+, al=a! ), x¥=z -2

(Recall that by convention 0! = 1.) For example, if n = 3 and a = (1,0,4) then
we have || = 1+ 0+4 =5 and a! = 1!-0! - 4! = 24, and (1, T, 13)* = 3175,
Given a function f: E — R of class C*(E) and an n-tuple of non-negative integers
a=(ay,...,q,) with |a| < k then we write

olel f

ax?l [ al‘%n ’

Def =

Since f is of class C*(E), all its k-th order partial derivatives exist and are continuous
and, by Schwarz’s theorem, one can change the order of mixed derivatives. This ensures
that as long as |a| < k the above notation is well-defined and unambiguous.

Theorem 3.5 (Multivariate version of Taylor’s theorem). Let k € N. Suppose E C
R"™ is open and f: E — R is a function of class C*(E). Then

D f(a o

f(x)=> |< )(x —a)® + rp(x) (3.4)
aoe o

where the sum is taken over all n-tuples of non-negative integers @ = (ayq, ..., )

re(x) 0.

x—all3

with |a| < k and ri(x) is an “error” term satisfying limy 5
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Note that if £ = 1 then formula (3.4) is the same as (3.2) and if k = 2 then formula
(3.4) is the same as (3.3).

3.10 Local Extreme Values

One of the main uses of ordinary derivatives is in finding maximum and minimum
values (extreme values). In this section we see how to use partial derivatives to locate
maxima and minima of functions in more than one variables. This theory finds many
applications, for example it can be used to maximize the volume of a box without a
lid if we have a fixed amount of cardboard to work with.

z absolute
maximum
local
maximum
j =
- "~ >
X e Y
absolute lo.ca.l
.. minimum
minimum
Figure 3.6

Look at the hills and valleys in the graph of f shown in Fig. 3.6. There are two
points where f has a local maximum, that is, where f is larger than at nearby values,
and two local minima, where f is smaller than at nearby values. We observe that
at all these extreme values, the tangent plane to the graph is horizontal, or in other
words, all the partial derivatives vanish at these points. This motivates the following
definition.

Definition 3.12 (Stationary Point). We say that a = (ay,...,a,) € F is a stationary
point of the function f: E — R if all its partial derivatives are well-defined and vanish
at a, that is,

of . _of

Txl(al’”"an) = B
Definition 3.13 (Local Maximum and Minimum of a Function). We say that the
function f: £ — R admits a local maximum (resp. local minimum) at the point a € £
if there exists a real number 6 > 0 such that for all x € F we have x € B(a, d) implies
f(z) < f(a) (resp. f(z) = f(a)). Furthermore, we will say that a function admits a
local extreme value at the point a if this function admits either a local maximum or a
local minimum at that point.

(a1,...,a,) =0.

The notion of a local maximum or minimum is not to be confused with the notion
of (global) maximum or minimum given in Definition 2.10.
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Theorem 3.6 (Necessary Condition for local extreme values). Let f: E — R be a
function and assume all partial derivatives of f at point a exist. If f has a local
extreme value at the point a, then a must be a stationary point.

Figure 3.7: A so-called monkey saddle surface, with the equation z = 2% — 312,
Its name derives from the observation that a saddle for a monkey would require two
depressions for the legs and one additional depression for the tail.

The geometric interpretation of Theorem 3.6 is that if the graph of f has a tangent
plane and a local extreme value at a point a, then this tangent plane must be horizontal.

Remark 3.5. The condition demonstrated in Theorem 3.6 is only a necessary one,
but not sufficient, because stationary points are not always local extreme values. For
example, let f: R? — R be the function defined by f(z,y) = 23 — 3zy?. Since

of of

—(0,0) = =(0,0) =0,

(0.0 = 50.0)
ti follows that (0,0) is a stationary point of f. However, f does not have a local
extreme value at (0,0), which is evident from the graph of f depicted in Fig. 3.7.
Indeed, we see that this surface has a horizontal tangent plane at the origin, yet it
does not have a local extreme value at that point.

Proposition 3.3. Given a function f: E — R, if f possesses a local extrema at the
point a = (ay,...,a,), then, in light of the necessary conditions outlined in Theo-
rem 3.6, the point a must fall into one of the following categories:

o Stationary points of f, where the gradient of f exists and vanishes;

o Points within the domain E at which at least one of the partial derivatives of f

does not exist.

This categorization is crucial for identifying the points at which the function f may
achieve its maximum or minimum values, highlighted by either a zero gradient (indi-
cating a lack of change in all directions) or the absence of a derivative (indicative of a
potential sharp point or discontinuity).
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Example 3.9. Consider four points in R*: A = (7,1), B = (z,—xz), C = (y,y), and
D = (8,4). How should we choose x and y so that the sum of the distances from A to
B, from B to C, and from C to D is minimal? This problem is equivalent to finding
a point in R? for which the function f: R? — R defined by

Fla.y) = /(@ =72+ (=2 = 17+ (2 — )+ (—0 — ) +/(y = 8+ (y — 4
=2 <\/$2—6x + 25+ \/x2—|—y2 + \/yz— 12y+40>
reaches its minimum. First, we need to demonstrate that such a point exists. For this,
let £ = {(z,y) € R?: 2* + y* < 10?}. Since f is continuous on F and E is a compact

subset of R?, it follows from the Extreme Value Theorem (see Proposition 2.3) that
there exists an element (a,b) in E such that

f(a,b) = (g)igEf(x,y)-

Consequently, noting that for every (z,y) ¢ E:

f(z,y) = V2 22 + 92 > V2v/1000 > V2(5 + v/40) = £(0,0) > f(a,b)

we can conclude that

f(a,b) = min_f(x,y).

(z,y)ER?

So there exists a global minimum for the function f. Notice that

of 2 —1/2 2 2\ ~1/2

&E(x,y)—ﬁ«x —6x—|—25) (x—3)+(x —i—y) x)

of 9 o\ —1/2 9 ~1/2

afy(%,y) = \/§<($ +97) Tyt (- 12y +40) (y—6)>
for (x,y) # (0,0). Since the only stationary point of f is (1,2), we can assert that
(a,b) = (1,2) or (a,b) = (0,0) (see Proposition 3.3). However,

£(1,2) = 5V10 < V2(5 + v40) = £(0,0)
thus, we can affirm that (a,b) = (1,2). Consequently, the two sought points are
B =(1,—-1) and C = (2,2).

Fig. 3.8 below provides the geometric solution to this problem.

3.11 Global Extreme Values

The Extreme Value Theorem (Proposition 2.3) says that any continuous function on
a compact set attains a maximum and minimum. To find these extreme values (which
are sometimes also called absolute extreme values or global extreme values), we can
employ the following extension of the Closed Interval Method.
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Figure 3.8: The aim is to find a point C' on the blue line and B on the purple line
such that the distance AB + BC + C'D is minimal.

Finding Global Extreme Values. Let f: F — R be a continuous function on
a compact set F and suppose f is differentiable on the interior E. To find the
absolute maximum and minimum values of f on E, complete the following three
steps:
1. Find the stationary points of f on the interior E.
2. Find the extreme values of f on the boundary OF.
3. Compile a list of the function values at the points found in steps 1 and 2. The
largest of these values is the (absolute/global) maximum value; the smallest
of these values is the (absolute/global) minimum value.

Example 3.10. Let us find the absolute maximum and minimum values of the func-
tion f(z,y) = x® — 2zy + 2y on the rectangle D = {(z,y) : 0< 2 <3, 0 <y <2} =
0,3] x [0,2].

Since f is a polynomial, it is continuous on the compact rectangle D, so Proposi-
tion 2.3 tells us there is both an absolute maximum and an absolute minimum. First
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we find all the stationary points. These occur when

of
ox
of
Jdy

(:Ir,y):2:1:—2y:0,
—(z,y) =22 —2y =0,

so the only stationary point in is (1,1). This point is in D and the value of f at this
point is f(1,1) = 1.

In step 2 we look at the values of f on the boundary of D, which consists of the four
line segments L; = [0, 3] x {0}, Ly = {3} x[0,2], L3 = [0, 3] x {2}, and L, = {0} x 0, 2].
On L; we have y = 0 and
r < 3.

fa.0)=a% 0

This is an increasing function of x, so its minimum value is f(0,0) = 0 and its maximum
value is f(3,0) =9. On Ly we have x = 3 and

N

which is a decreasing function of y, so its minimum value is f(3,2) = 1 and its
maximum value is f(3,0) = 9. On L3 and L4 we can execute very similar strategies.
We find that when restricted to Lg, f has a minimum at (2,2), which is f(2,2) = 0
and a maximum value at (0,2), which is f(0,2) = 4. The maximum of f on L, is at
(0,2), with £(0,2) = 4, and the minimum is at (0,0) with f(0,0) = 0.

In step 3, we compare all the values that we have thus far found:

(xy) | f(x,y)
(L1 | 1
0.0) | 0
B0 | 9
B32) | 1
22) ] 0
02)] 4

We see that the maximum value of f on D is f(3,0) = 9 and the minimum value is

£(0,0) = f(2,2) = 0.

3.12 Saddle Points

Recall that for functions of a single variable, a stationary point ¢ where f’(¢) = 0 may
correspond to a local maximum, a local minimum, or neither. An analogous situation
occurs for multivariate functions. If a is a stationary point of a function f, where
Vf(a) =0, then f(a) may be a local maximum, a local minimum, or neither. In the
last case, we are dealing with a so-called saddle point of f.

Definition 3.14. If a is a stationary point of a function f that is not a local extreme
value then a is called a saddle point of f.
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The name ‘saddle point’ derives from the fact that the prototypical example in
two dimensions is a surface that curves up in one direction, and curves down in a
different direction, resembling a riding saddle (for a rider of an animal such as a horse)
or landform saddle (a mountain pass between two peaks). In general, the graph of a
function at a saddle point need not resemble an actual saddle, but the graph crosses
the tangent plane at that point.

In summary, saddle points are points where the tangent plane is horizontal, but
there are points arbitrarily close to it where the function value lies above the tangent
plane, and at the same time points arbitrarily close where the function value is below
the tangent plane.

3.13 The Second Derivative Test — two-variable case

We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test is analogous to the Second Derivative Test for
functions of one variable.

Theorem 3.7 (Second Derivative Test — 2 variable case). Let E C R? be an open
set and f: E — R a function of class C*(E). Let D denote the determinant of the
Hessian matrix of [ at the point (a,b) € E, i.e.,

%(a,b
%I (a,b)

0xdy

D = det(Hess(f)(a,b)) =

21 (a, b))

)
oL (a,b)

2 2 2 2
= 24(a.b) - 24(a,b) — (2L (a,0)) "

If (a,b) is a stationary point then the following conditions determine the nature of the
extreme value at (a,b):

o If D >0 and %(a, b) > 0, then f has a local minimum at (a,b).

o If D >0 and g%(a, b) < 0, then f has a local maximum at (a,b).

o If D <0, then f has a saddle point at (a,b).

o If D =0 then the test is inconclusive.

Remark 3.6.
o If D = 0 then the test gives no information: f could have a local maximum or
local minimum or a saddle point at (a,b). An example of such a function would
be f(z,y) = (y — 2?)(y — 22?) at the point (a,b) = (0,0).
e« If D > 0 then %(a,b) and ‘327’;(@,17) are both non-zero and have the same

sign. This means we can replace the condition g%’;(a,b) > 0 in the first part

of the test with either the condition %(a, b) > 0 or even with the condition
tr(Hess(f)(a,b)) > 0, the trace of the Hessian matrix. The same goes with the
condition %(a, b) > 0 in the second part of the test.

e Note that Theorem 3.7 only concerns functions in two variables. There is also

a version of the second derivative test for functions in three and more variables,
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which we cover in the next section.

Example 3.11. The two functions g, h : R*> — R defined respectively by g(z,y) =
23+ 22 +y3 and h(z,y) = 2* +y* (see Example 3.11) have (0,0) as a stationary point
and satisfy

( L <o,o>)2 ~%90,0-2910,0) =0,

0x0y 0x? 0y?
&2h > 9h &2h
(55, 0.0) = S50.00- S5 0.0) =0

Since the function g does not have a local extreme value at the point (0,0), while the
function h does, this example illustrates that for a C? class function f: R? — R in the
neighborhood of (a,b) which satisfies

Of oy _OF 4 Pf o\ P P
%(a, b) = a—y(a,b) =0, and <8x3y(a’ b)) - w(a, b) - a—yQ(a, b) =0,

it is generally not possible a priori to determine whether it admits an extrema at the
point (a,b).

m;}
+ 20 "= 30 ‘
(] +
8 10 fa OO0
(Tt ™y 20 \‘\ "0' { 4
< L X0 Wy 11
e 10 Aol sttt
= S R e Ee / ;
= e 2 T 2
0 0
Y 2 -2 X ¥ = 2 X

Example 3.12. Let f: R? — R be the function defined by f(z,y) = y3+3y*—4dzy+a2.
Since for all (z,y) € R%:

aof B of a2
%(% y) = —4dy + 2, By (z,y) = 3y~ + 6y — 4z,
and
O’ f O’ f o’ f
8x2(x7y) _27 amay(x’y) __47 aiyg(xvy) _6(y+1)a

it follows that the stationary points of the function f are (0,0) and (4/3,2/3), and at
these points
0% f 0% f

O f 2
5:2(0.0)- 072(0’0) - <axay(0’0)> =4 <0,




60 CHAPTER 3. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

and

O f O f O f 2
5.2(4/3.2/3) 872(4/3, 2/3) — <8x8y(4/3’ 2/3)) =4>0.

Therefore, according to Theorem 3.7, the function f has a local minimum at the point
(4/3, 2/3), while at the point (0,0), it does not have a local extreme value because it
is a saddle point.

3.14 The Second Derivative Test — general case

Recall from linear algebra that every real symmetric n x n matrix is diagonalizable.
In particular, symmetric matrices possess n real eigenvalues (when counted with mul-
tiplicities) and admit a basis of eigenvectors. This also applies to the Hessian matrix
of a function: As we have learned, if f(z,...,2,) is a function in n variables of class
C? then its Hessian matrix

9 92
81‘18$1 T 6a:n6m1
Hess(f) = : ' :
>f 9f
0x10x, " OznOzn
is a real symmetric matrix, which means it admits n real eigenvalues Ay, ..., \,. These

eigenvalues determine the curvature behavior of the function f and play a crucial role
in the second derivative test for multivariate functions.

Theorem 3.8 (Second Derivative Test — general case). Let E C R™ be an open set
and f: E — R a function of class C*(E). Let a € E and let \i,...,\, denote the
eigenvalues of the matrix Hess(f)(a). If a is a stationary point then the following
conditions determine the nature of the extreme value at a:

o If the eigenvalues A1, ..., \, are all positive then f has a local minimum at a.

o If the eigenvalues A1, ..., \, are all negative then f has a local maximum at a.

o If the eigenvalues A1, ..., \, are all non-zero, but some are positive and some are
negative, then f has a saddle point at a.

o If at least one of the eigenvalues A1, ..., \, equals zero then the test is inconclu-
sive.

Example 3.13. Let f: R?* — R be a function of class C?(R) and let a be a stationary
point of f. If the three eigenvalues of the Hessian matrix Hess(f)(a) satisfy

)\1‘{')\24‘/\3 =2 and /\1/\2>\3 =-1

then can f have a local extreme value at the point a? The answer is no. Since
A A2A3 = —1, the Second Derivative Test is not inconclusive, so we must be either in
the first, second, or third case of the test. However, since A\; A \3 is negative we cannot
be in the first case, and since A\; + Ay + A3 is positive we cannot be in the second case.
By method of elimination, we must be in the third case of the test, so a is a saddle
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point of f.

3.15 Implicit Function Theorem

In mathematics, we say that variables are in an explicit relation when one variable is
expressed directly in terms of the other variable(s). For example, an ezplicit equation
of a variable x,, in terms of the variables z1,...,x,_1 is a relation of the form

Tp = f(xla S wxnfl)?

where f is a function of n — 1 variables. In this context, we refer to z, as the de-
pendent variable and x1, ..., x,_1 as the independent variables and the function f is
the “law” that describes the relationship between z, and xy,...,x, 1. The great ad-
vantage of explicit relations is that if one knows the values of all the independent
variables 1, ..., x,_1 then it is relatively easy to calculate the values of the dependent
variable z,,.

In contrast to explicit relations, variables can also be in an implicit relation, which
means their relationship isn’t expressed explicitly in terms of one variable depending
on the others. More precisely, an implicit equation in the variables xq,...,x, is a
relation of the form

F(zy,...,z,) =c,

where F' is a function of n variables and ¢ € R is a constant. For example, the unit
circle is commonly described by the implicit equation

:172+y2:1.

Note that simple implicit equations can easily be transformed into explicit equa-
tions by isolating one variable on one side of the equation. For example, the implicit
equation x + y + z = 1 (which describes a plane in R?) can easily be tuned into the
explicit equation z = 1 — z — y using rudimentary algebraic manipulations. But if
the implicit equation is more complicated then it is often not possible to express one
variable in terms of the others by hand. In this case, we need a more sophisticated
tool, which is where the Implicit Function Theorem comes into play.

An implicit function is a function defined by an implicit equation that expresses
one of the variables, say x,, as a function of other variables, say zi,...,z, 1. Here’s
the simple example: The equation 22 + y?> = 1 of the unit circle defines y as an
implicit function of z if —1 < z < 1, and y is restricted to positive values. Under this
restrictions we have

4yt =1 <= Y= V1—a? 1

- -

implicit equation implicit function for y>0
where f(x) = v/1 — 22 is the implicit function defined by the implicit equation z2+y* =
1 in the domain {(z,y) : —1 < x < 1, y > 0}. Similarly, if y is restricted to negative
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values then we have

=1 — y=—v1—x2

—— —

implicit equation implicit function for y<0
where f(z) = —+/1 —2? is the implicit function defined by the implicit equation
2?2 + 9% = 1 in the domain {(x,y) : =1 < x < 1, y < 0}. If y = 0, or equivalently if
x =1 or x = —1, then it is impossible to express y in terms of z and so the implicit

function does not exist.

The Implicit Function Theorem tells under what conditions — and in what neigh-
borhood — an implicit function exists, which helps us deal with cases where we have
an implicit equation relating multiple variables and it’s not easy to solve explicitly for
one variable in terms of the others.

Theorem 3.9 (Implicit Function Theorem). Let n be an integer where n > 2. Let
E C R" be an open set, and let F: E — R be a function of class C'(E). If a =
(ay,...,a,) € E and ¢ € R is such that

oF
oz,
then there exist a neighborhood U C R™! of the point (ai,...,a, 1), a neighbor-

hood V' C R of the point a,, and a unique function f: U — V such that for all
(x1,...,2p-1) € U and all x, € V we have

F(a)=c and

(a) # 0,

F(zy,...,2,) =c — Ty = fx1, ..., 2).

The function f: U — V is called the implicit function for the equation F(z1,...,z,) =
c at the point (ay,...,a,).

Remark 3.7. Note that the implicit function f: U — V satisfies

ap = f(ab s 7an—1)~

This follows from the assumption F'(ay,...,a,) = c.

Remark 3.8. If, in the statement of the Implicit Function Theorem Theorem 3.9, we
do not assume that %(a) # 0, then the result may no longer be true, even if the other

assumptions are satisfied. For example, this is the case for the function F': R? — R
defined by F(z,y) = 2> + y* for a = (0,0).

Example 3.14. Let F': R?> — R be the function defined by F(z,y) = 1 — ye® + xev.
Since F'(0,1) = 0 and ‘?)—5(0,1) = —1, we know, thanks to the Implicit Function
Theorem, that there exists a real number 6 > 0 and a continuously differentiable
function f: (—9,d) — R satisfying the following two properties (see Example 3.14):
f(0) =1and F(z, f(z)) = 0 for every x € (—6,0). Since the derivative of the function
s — F(s, f(s)) is zero, we can use the chain rule for multivariable functions (which we
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will cover in Section 5.6) to conclude that

oF oF
—(0,1 —(0,1)f'(0) =
50+ 5-0.1)70) =0
and therefore
2 (0,1)
fl0)=—-22""""= 1+4e.
50(0,1)

Plot of 1 - ye* + xe¥ =0

3.16 Implicit Differentiation

The technique we used at the end of Example 3.14 to compute the derivative of a
function is called implicit differentiation.

Theorem 3.10 (Implicit differentiation). Let n be an integer, where n > 2, let E
be an open subset of R", and let F: E — R be a function of class C'(F). Sup-
pose a = (ay,...,a,) and there exists exists a real number § > 0 and a function
f:B((ay,...,a,_1),0) = R of class C*(B((ay,...,a,_1),0)) such that

F([Eh ey L1, f([[‘l, . ,.I‘n_1>> =0
holds for all (z1,...,x,-1) € B((a1,...,an-1),0). Then

OF
af %(a)
L (ay,. ag)=—2E o Yi=1,....n—1
axj (a'la ,a 1) g;; (a) J n

3.17 Tangent Line to Implicit Curves

An implicit curve is a plane curve defined by an implicit equation relating two variables,
commonly x and y. For example, the unit circle is defined by the implicit equation



64 CHAPTER 3. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

2% + y? = 1. In general, every implicit curve is defined by an equation of the form
Fz,y)=c

for some function F' of two variables and some constant c¢. Hence an implicit curve can
always be considered as the level curve of a function in two variables (cf. Definition 2.2).
In this context, “implicit” means that the equation is not expressed explicitly in either
one of the variables of the function.
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Figure 3.9: The implicit curve sin(z + y) — cos(zy) + 1 = 0 plotted as a graph in 2
dimensions (left) and as a level curve of the surface z = sin(z + y) — cos(xy) + 1 in 3
dimensions (right). This example also showcases the possibly complicated geometric
structure of an implicit curve.

Let D C R? be an open set, F': D — R a function of class C'(D), ¢ € R, and
consider the implicit curve defined by the equation

F(z,y)=¢, (z,y) € D.

The implicit function theorem (Theorem 3.9) describes conditions under which the
above equation can be solved in terms of x and/or y. This theorem is key for the
computation of essential geometric features of implicit curves such as tangents, normal

vectors, and curvature. In particular, the Implicit Function Theorem says that if
(a,b) € D such that

oF
F(a,b) =c¢ and o (a,b) #0,

then there exists a function f such that for all points (x,y) € D with ||(x,y) — (a,b)||

sufficiently small, we have F(z,y) = ¢ <= y = f(x). This leads to two crucial
insights:

« Equivalence between the level set and the graph of f: If the point (z,y)

is sufficiently close to (a, b) then it satisfies the equation F'(z,y) = ¢ if and only

if it lies on the graph of the function f. Formally, this relationship is expressed
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(#,y) € Le(F) <= (2,y) € G(f),

where L.(F) = {(z,y) € D : F(x,y) = ¢} denotes the level set of F" at height c,
and G(f) = {(z, f(x)) : x € dom(f)} represents the graph of the function f.

« Tangent line equation at a point on the graph of f: Recall from your
Analysis I course that the tangent to the graph of f at the point (a,b) is given
by the equation

y=fla)+ f'(a) - (z —a).
By implicit differentiation (Theorem 3.10) we know that

aF
f’(a) _ _gﬁ(av b),
Ty(a7 b)
which allows us to rewrite the equation of the tangent line as
% (a,b)
y=fla) — 220 (o~ a)

7y (@,0)

Finally, using f(a) = b, we can express the tangent line of F' at the point (a,b)
in terms of the gradient as

Equation of the tangent line to an implicit curve. Let D C R? be an open
set, F': D — R a function of class C'(D), and ¢ € R a real number. Consider the
implicit curve defined by the equation F(z,y) = c. If (a,b) is a point on this curve
with VF(a,b) # 0 then the equation of the tangent line to this implicit curve at
the point (a, b) is

Example 3.15. Given ¢ > 0, let us find the tangent line to the circle 22 + 3? = ¢ at
a point (a,b) on this circle.

Letting F(x,y) = 2? 4+ y?, the level set L.(F) is a circle of radius y/c. For a point
(a,b) such that a® + b*> = ¢ and b # 0, the condition %—5(@, b) = 2b # 0 holds. Thus,
near (a,b), the level set L.(F') corresponds to the graph of the function x — f(x),
defined as f(z) = vc — 22. If a® + b* = ¢ with b = 0, we can swap the roles of x and
y, as then

OF
%(a, b) = 2a # 0.
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In either one of the two cases, the gradient of F' is VF(z,y) = (2z,2y) and hence
VF(a,b) = (2a,2b). Therefore, the equation of the line through the point (a,b) and
tangent to the circle 22 + y? = c is

(2a,2b) - (m N “) = 0.

y—2>b
Using a? + b? = ¢, this can be simplified to

ax + by = c.

3.18 Tangent Plane to Implicit Surfaces

An implicit surface is a surface in R? defined by an equation of the form
F(z,y,2) =d,

where F' is some function depending on three variables and d is some constant real
number. Implicit surfaces are the same as level surfaces of functions in three variables.

——

<
e e
RIS

Figure 3.10: The surface that is depicted above is defined by the implicit equation
2y(y* — 32 (1 — 2% + (2 + y*)* — (922 = 1)(1 — 2%) = 0.

Let D C R? be an open set, F': D — R be a function of class C'(D), and (a, b, c) €
D with d € R such that

F
F(a,b,c) =d and %Z(a,b,c)#o.

The Implicit Function Theorem guarantees the existence of a differentiable function f
such that for all

c= f(a,b) and F(z,y, f(z,y)) =d for all (z,y) sufficiently close to (a,b).
« First consequence: For any (z,y, z) sufficiently close to (a, b, c), we have :

F(z,y,z) =d < z= f(z,y).
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In other words, locally around the point (a,b,c) the level set Ly(F) and the
graph G(f) coincide.
« Second consequence: As we have learned in Section 3.4, the equation of the
tangent plane to the graph of f at (a,b) is given by
of of

z = f(a,b) + %(a, b)(z —a) + @(a7b>(y — D).

On the other hand, using implicit differentiation (Theorem 3.10) we have

ai(a )__M and (lf(a )__%I;(a,b,c)
oz’ 9% (a,b,c) oy’ 9 (a,b,c)’
So we can rewrite the equation of the tangent plane in terms of the gradient of
F as
r—a
VF(a,b,c)-y—>b| =0,
z—c

which is the equation of the tangent plane to the graph of f at the point (a, b, ¢).
Thus, VF(a,b, ) is orthogonal to the tangent plane of the graph of f at (a, b, c).

Equation of the tangent plane to an implicit surface. Let D C R3 be an
open set, F': D — R a function of class C'(D), and d € R a real number. Consider
the implicit curve defined by the equation F(x,y,z) = d. If (a,b,c) is a point on
this curve with VF(a,b,c) # 0 then the equation of the tangent plane to this
implicit surface at the point (a, b, ¢) is

T —a
VF(a,b,c)-|y—b]| =0.
z—c

Example 3.16. Let F(z,y, z) = 2? +y? + 2? and consider the level set F(z,y,2) = 1,
which describes a sphere of radius 1. For a point (g, o) such that 22 + 32 < 1, let
29 = /1 — 2% —y2. We have F(zg,y0,2) = 1 and %—f(mo,yo,zo) = 229 # 0. The
equation of the tangent plane at the point (xg, yo, 20) is given by:

T — Xy 2xg T — o
VF(xo,90.20) - |Y—% | =0 <= |20 |- |y—w | =0.
zZ— 2 229 Z— 2

Simplifying the expression and using zZ + y2 + 22 = 1 we get the euqation of the
tangent plane as

ToT + Yoy + 202 = 1.
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3.19 Method of Lagrange Multipliers — single con-
straint

Constrained optimization is the process of optimizing a function with respect to some
variables in the presence of constraints on those variables. The Method of Lagrange
Multipliers is a powerful technique for constrained optimization. It lets you find the
maximum or minimum of a multivariable function subject to an implicit constraint
equation. While it was originally developed to solve physics equations, today it finds
applications in all sciences, especially in machine learning. To motivate the subject
matter, let us first look at a simple constrained optimization problem that you are
probably familiar with from your high school mathematics education.
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Example 3.17. For a rectangle whose perimeter is 20 meters, find the dimensions
that will maximize the area.

Solution: Let x denote the width and y the height of the rectangle in question. Both
the area A(z,y) = xy and the perimeter P(z,y) = 2z + 2y of the rectangle are
functions in the two variables x and y. The constrained optimization problem can
now be summarized as:

Maximize : A(z,y),
Constraint : P(z,y) = 20.

There is a simple method, using single-variable calculus, for solving this problem.
Since the implicit equation 2x 4 2y = 20 can easily be recast as an explicit equation
y = 10 — z, we can substitute this explicit formula into A(z,y) to get a new function
f(z) = A(x,10 — 2) = 10z — 2. This is now a function of x alone, so we just have to
maximize the function f(z) = 10x — 2% on the interval [0, 10]. Since f'(z) = 10 — 2z
we see that x = 5 is a stationary point for f(z). Since f”(5) = —2 < 0, the Second
Derivative Test tells us that x = 5 is a local maximum for f, and hence x = 5 must
be the global maximum on the interval [0, 10] (since the interval is compact and the
function f equals 0 at the endpoints of the interval). So since y = 10 — x = 5, then
the maximum area occurs for a rectangle whose width and height are both equal to 5
meters.

Notice in the above example that the ease of the solution depended on being able
to solve the constraint equation for one variable in terms of the other. However, this is
not always possible, especially when the constraint equation is more complicated and
when there are more variables involved. In this case, the hands-on task of solving the
constraint equation in terms of one of the variables is replaced by an application of
the Implicit Function Theorem.

The general type of constrained optimization problem that we are interested in is:

Maximize (or minimize) : f(z1,...,Z,),

Constraint : g(zq,...,z,) = c.

The function being maximized or minimized, f(z1,...,x,), is called the objective func-
tion. The function, g(x1, ..., z,), whose level set at height ¢ represents the constraint,
that is, all the values allowed to be considered for the optimization, is called the con-
straint function. Points (z1,...,z,) which yield maxima or minima of f(xy,...,x,)
with the condition that they satisfy the constraint equation g(x1,...,z,) = c are called
constrained maximum points or constrained minimum points, respectively.

A constrained optimization problem in two variables has an illustrative geomet-
ric interpretation. Indeed, if the input space is two-dimensional, then the graph of
the objective function f(z,y) is a 3 dimensional surface and the constraint equation
g(x,y) = cis a curve in 2 dimensions. We can projected the curve (in red) onto
the surface (in blue) as shown in Fig. 3.11. The goal of the constrained optimization
problem is simply to find the highest (resp. lowest) point on that red line.
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Jx.y)

X

Figure 3.11: Constrained optimization problem in two variables.

In Fig. 3.11 we see that the highest point on the red line is the point where the
red line is tangent to a level curve of f(x,y). But the red line is itself a level curve
coming from the function g(x,y). So the core idea is to look for points where the level
curves of f(z,y) and g(x,y) are tangent. This is the same as finding points where the
gradient vectors Vf and Vg are are parallel to each other (see Fig. 3.12). In other
words, there exists some A € R such that Vf = AVg.

y

e )
Constraint function

glx,y) =0 Cony
: X Oup Ii

Figure 3.12: Maximization of function f(x,y) subject to the constraint g(x,y) = 0.
At the constrained local extreme value, the gradients of f and g, namely V f(z,y) and
Vyg(z,y), are parallel.

In general, the Lagrange multiplier method for solving constrained optimization
problems can be stated as follows.

Theorem 3.11 (Lagrange Multiplier Theorem). Consider an open set E C R", two
functions f,g: E — R of class C*(E) and let ¢ € R be a constant. If the function f
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restricted to the level set {x € E : g(x) = c} achieves a local extreme value at a point
a and additionally Vg(a) # 0 then there must be a scalar number A € R such that
Vf(a) = AVg(a). The number X is called the Lagrange multiplier.

Example 3.18. For a rectangle whose perimeter is 20 m, use the Lagrange multiplier
method to find the dimensions that will maximize the area.

Solution: As we saw in Example 3.17, with x and y representing the width and height,
respectively, of the rectangle, this problem can be stated as:

Maximize : A(x,y) = zy
Constraint equation : P(z,y) = 2z + 2y = 20

In light of Theorem 3.11, the above can only have a solution when VA(z,y) =
AV P(z,y) for some \. Since VA(z,y) = (y,z) and VP(z,y) = (2,2), we need to
solve the system of equations

y = 2\,
T = 2\

The general idea is to solve for A in both equations, then set those expressions equal
(since they both equal A) to solve for z and y. Doing this we get

Y x
2 2 ey

Substituting either of the expressions for x or y into the constraint equation, we obtain
20 = g(x,y) = 2242y = 2x+2x = 4o — x=5 — y=>~b.

Hence there must be a maximum area, since the minimum area is 0 and f(5,5) =
2S > 0, so the point (5,5) that we found (called a constrained critical point) must be
the constrained maximum. Therefore the maximum area occurs for a rectangle whose
width and height both are 5 meters.

Example 3.19. Let us find the constrained extreme values of the expression x + z
subject to the constrained g(x,vy, 2) = 2 + y*> + 22 = 1. In other words,

Maximize (and minimize) : f(z,y,2) =z + z,

Constrained equation : g(z,y,z) = 2% +y* + 2% = 1.

By Theorem 3.11, the strategy is to look for solutions to the equation Vf(z,y,z2) =
AVyg(z,y,z). Since V f(z,y,2) = (1,0,1) and Vg(x,y, z) = (22, 2y, 2z), we have

1 = 2\
0 = 2\y
1 = 2z

The first equation implies A # 0 (otherwise we would have 1 = 0), so we can divide
by A in the second equation to get y = 0 and we can divide by A in the first and
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third equations to get x = % = 2. Substituting these expressions into the constraint
equation g(z,y,2) = 22 + y? + 22 = 1 yields the constrained critical points (%, 0, %)
and (\_/1 0, \_/1) Since f( 1 ,%) > f( —1.0, _1), and since the constraint equation
?+yi+ =1 descrlbes a sphere (Whlch is bounded) in R3, then (\f’ 0, %) is the

constrained maximum point and ( ,0, f) is the constrained minimum point.
Example 3.20. We aim to prove that for any m-tuple of positive real numbers
(v, ..., ), the following inequality holds:

a1+ ...+ oy
—m .

g Qg S

In other words, the geometric mean of a finite number of elements from R? is never
greater than their arithmetic mean.

Given an arbitrary m-tuple of positive real numbers
a=(a,...,0pm),
let us consider the set
E={(z1,...,2p) €ER" 12y 2 0,...,2, >0}
and define two functions f,g: EF — R by

flzy, .o xm) = oy -0 Ty,

g1, ... ) =214+ ...+ Ty — [, where =01+ ...+ qp.
Given that
Ey={(z1,...,2p) €E|g(x1,...,2,) =0}

is a compact subset of R”™ and f is continuous, there exists at least one element
a = (ay,...,ay,) in By where the restriction of f to Fj achieves its maximum. The
method of Lagrange multipliers asserts that this maximum, referred to as a constrained
maximum, occurs in the following cases:

1) ar-...-ay=0,

2) aj-...-a, >0 and there exists a real number A such that

of 99\ _
6:1:1( )+)\8£C1( )_07

of

0T,

5’9

——(a) + \—=—

In the first case, we have f(a) = 0. Observing that (%,,%) € E; and that
f(£,...,2) > 0, we conclude that the first case does not occur for a point a where

m’ ’'m
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the constrained maximum is achieved. In the second case, f is indeed of class C! in
the vicinity of @ and there exists a real number A such that

1 way-... a,
7u+)\:0’

m aq

1 way-... a,
7u+)\:0.

m A

Therefore, by solving this system and taking into account that a; + ...+ a,, = 3, we
deduce that

R
ay = ... =0ap = —,
m
and thus the constrained maximum is achieved at a = (%, ceey %) € F;. Finally, since
a=(o,...,qn) € B, we can state that

o - a = fla) < f(a) = R/ay - ay, =

Example 3.21. Consider a situation in which Vg(zo,y0) # 0 is not satisfied, and
thus the theorem cannot be applied to the functions f(x,y) = 2>+ y and g(x,y) = 3.
Clearly, f admits a local minimum at (z,yo) = (0,0) under the constraint g(xg, yo) =
0, since f(z,0) = 2%

Moreover, we have

Vf(ﬂﬁ,y):( ) ) Vg(x,y)=<20y>,

vio.0 = (1) vaoo ()

hence there exists no A € R such that
V£(0,0) = AVg(0,0).
Here, Vg(xo,y0) # 0 is not satisfied.
0 ) for all (z,y) € R? st. g(z,y) = 0.

~—

In fact, Vg(z,y) = ( %

Intuitive Explanation for the Theorem: We argue by contradiction and
assume that the calculation is false. That is, V f(z0, yo) is not a multiple of Vg(xq, yo)
(in particular V f(zo,v0) # 0). Fix ¢ = f(xo,40) € R. Since V f(z0,yo) is orthogonal
to the level set L.(f) at (zo,vo), and Vg(xg,yo) is orthogonal to the level set Ly(g) at
(20, Y0), we deduce that L.(f) crosses Lo(g) without being tangent to it. This implies
that for £ > 0 small enough, Ly(g) also crosses L.ic(f) and L._.(f). In particular, f
does not have a local extremum at (zq, yo)-



74 CHAPTER 3. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

Example 3.22. Consider a box without a cover.

Volume = abe,
Surface Area = ab + 2ac + 2bc.

Find all those boxes of maximal volume for a given surface area S > 0. We put
x=ab,y =ac,z =be, so f(x,y,z) = \/Tyz represents the volume.

g(x,y,z) =x+2y+22—5=0, E:{(m,ywz)ER3:x>O,y>O,Z>O}.

For z,vy, z, we recover a,b,c as: a = ,/%,b = 1/””—yz,c = ,/%. Moreover, zyz = 0 &
abc = 0 < zero volume (not maximal). We look for (xg, yo, 2z0) € E such that f reaches
its maximum under the constraint g(x,y, z) = 0. Since {(z,y,2) € E: g(z,y,z) = 0}
is compact (closed and bounded), and f is continuous, such a maximum (z, Yo, 2o)

exists.
Observe, moreover, that Vg(z,y, z) = (1,2,2) # 0. We then search for (z,y,z) € E
and A € R such that:

{Vf(m/,Z) = A\Vy(z,y,2)
g(x7 y? Z) = 0

That is, we have:

L A
z =
2, /xyzy
1
rz =2\

2, /a:yzxy -

r+2y+2:—-5=0

Substituting, we get:

xz =2yz (1)
xy = 2yz (2)
r+2y+22—-5=0 (3)
From equations (1) and (2), we obtain y = § and z = 3. Substituting into (3), we
have:
S
r+r+r—-5S=0 = =g
Thus,

S S S s S S 1/88
:I:—g, Y 6 Z—g, and f(x,y,z)_m_6\/;>0_

For all points (x, y, z) on the boundary of E, denoted as OF, the function f satisfies
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flz,y,z) =0< %\/%3. Therefore, the final solution is given by the point (xg, 4o, z0) =
(ﬁ S
3767

Cﬂ\tl)
~—

In terms of variables (a, b, c), we have:

R RS







Chapter 4

Parametric Curves in R"

We now turn our attention to a particularly important case of vector-valued functions,
where the domain is an interval of R and its range is a subset of R™ with n > 2, in
which case there exist specific notions and terminology.

Definition 4.1 (Parametric Curve). Let n > 1 be an integer. Given a non-empty
interval I C R, a (vector-valued) function of the from f: I — R" is called a parametric

curve in R".

Given a parametric curve

fi(t)
f(t) = o, tel,
fu(t)
the functions fi, ..., f, are called the component functions of f. The interval [ is called

the parameter interval of the curve and the variable ¢ is the parameter. The image of

f
Imf={f(t):tel}

is also called the trace of f. Parametric curves are often used to describe the path of
a moving particle in space, where the particle’s position, represented as a point in R?,
varies with a single time-parameter ¢. The image of the parametric curve corresponds
to the trajectory “traced” by the moving particle, thus earning the name trace.

Example 4.1 (Helix). For r > 0 and c € R let f: R — R3 be given by

77
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Figure 4.1: Helix

Example 4.2 (A non-injective curve). Let f: R — R? be the function

ﬂw=<§:i>

We have f(—1) = f(1) = 0 and

Example 4.3. Let us find a parametric curve whose trace represents the curve of
intersection of the cylinder 2% + y* = 1 and the plane y + 2z = 2 (see Fig. 4.2).

Let C' denote the parametric curve that we are seeking. The projection of C' onto
the zy-plane is the circle 22 + y? = 1, z = 0. The parametrization of this circle is
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given by

x(t) = cos(t), y(t) = sin(t), t €10,2m).
From the equation of the plane, we have

z(t) =2 —y(t) = 2 — sin(t), t € 0,2m).

So we can write parametric function tracing the curve C as
) = [y |, tefo.2m),

where
x(t) = cos(t), y(t) =sin(t), and =z(t) =2 —sin(t).

The arrows on the right in Fig. 4.2 indicate the direction in which C' is traced by the
parametric curve r(t) as the parameter ¢ ranges from 0 to 27.

C (—L,0,2)

0,1, 1)

Figure 4.2

4.1 Continuity and Differentiability of Parametric
Curves

Definition 4.2 (Continuity). A parametric curve f: I — R" is continuous at ty € I
if and only if, for every real number € > 0, there exists a real number § > 0 such that

forall t € I,
=t <6 — [IE() — f(to)2 <e.

If £: I — R™ is continuous at every ¢ € I then f is also referred to as a path in R™.



80 CHAPTER 4. PARAMETRIC CURVES IN R"

Proposition 4.1. Suppose f(t): I — R" is a parametric curve in R" and

fi(?)
ft)=|
fn(t)
are its components functions. Then f(t) is continuous at ty if and only if all of its
component functions fi(t), ..., f.(t) are continuous at ty.

Definition 4.3 (Differentiability). We say that the curve f is differentiable at to € I
and that its tangent vector (or velocity vector) at tq is f'(ty) € R™ if

NECEEO

—f'(t
ra— (to)

= 0.
2

t—to

If f is differentiable at ¢, and f'(¢y) # O then the vector

1

O

is called the unit tangent vector.

Proposition 4.2. Suppose f(t): [ — R" is a parametric curve in R™ and

fi(#)
()= |
falt)
are its components functions. Then f(t) is differentiable at t, if and only if all of its
component functions fi(t), ..., f.(t) are differentiable at ty. In this case,
fi(to)

Lttt = () = |

dt
f(to)

Properties of tangent vectors: Below, we see that many of the differentiation
formulas for real-valued functions have their counterparts for parametric curves.

1. Linearity: For all a, 8 € R we have
d
a[au(t) + Bv(t)] = au'(t) + BV'(t).
2. Product rule for scalar products:

L lon(n)] = o (u() + gl

3. Product rule for inner products:

d / /
%[u(t) -v(t)] =d'(t) - v(t) +ult) - v(1).
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4. Chain rule:

% fu(g(0)] = w'(9(1)g/ (1)

Definitions 4.1. Let f: I — R" be a parametric curve with component functions
fis--oy fn Let E > 1 be an integer. If the derivatives f;m) exist and are continuous on
I forall 1 < m < k and all 1 < j < n, then the curve f is said to be of class C’k(]). If
f is of class C*(I) for all k > 1, it is said to be of class C*(I).
Example 4.4. Consider the curve

=1 —t, =% 2= cos(3t).

Let us find the equation of the tangent line at ¢ = 1.

First, we compute the Velocity Vector:

d d , d
v(t) = (dt(tg —1), e cos(St)> = (3t — 1,2, —3sin(3t)).

At t = 1, this yields
v(1) = (3(1)® — 1,2¢% —3sin 3) = (2,2¢*, —3sin 3).
We also need the point of tangency, which is
P = (1 —1,¢*W cos(3(1))) = (0, €%, cos 3).
We can now write the tangent line equations (in parametric form) as
r=0+2s, y=e’+2e%, z=-cos3—3sin3-s.

Thus, the tangent line at (0, €2, cos 3) follows the direction (2,2e?, —3sin 3).

4.2 Motion in Space: Velocity and Acceleration

We can use vector-valued functions to represent physical quantities, such as velocity,
acceleration, force, momentum, etc. For example, let the real variable t represent time
elapsed from some initial time (such as ¢ = 0), and suppose that an object of constant
mass m is subjected to some force so that it moves in 3-dimensional space, with its
position (x,y, z) at time t a function of ¢. That is, x = z(t), y = y(t), z = 2(t) for
some real-valued functions z(t), y(t), z(t). Call r(t) = (z(t),y(t), 2(t)) the position
vector of the object. We can define various physical quantities associated with the
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object as follows:

()
position: r(t) = ygt)
)

2(t)
velocity: v(t) =1(t) =r'(t) = Cciil;
'(t)
=Yt
(1)
acceleration: a(t) = v(t) = v'(t) = Cji::
=i(t)=r"(t) = flti
I”(t)
=1y"(t)
z”(t)
momentum: p(t) = mv(t)
forces F(6) = p(t) = /(1) = (Newton's Sccond Law of Motion)

The magnitude ||v(¢)||2 of the velocity vector is called the speed of the object. Note that
since the mass m is a constant, the force equation becomes the familiar F(t) = ma(t).

Example 4.5. Let us show that if ||r(¢)||2 = ¢ (a constant) then r'(¢) is orthogonal
to r(t) for all ¢t.

To prove this claim, we will simply use the product rule for inner products. Since

r(t) -x(t) = [[r(t)|; = ¢*
and c? is a constant, we have

Ci(r@) -x(t)) = 0.

By the product rule, the left hand side is

jt(r(t) cx(t)) = v/(£) - x(t) + r(t) - x'(£) = 20'(¢) - x ().

Thus r'(t) - r(t) = 0, which says that r’(¢) and r(¢) are orthogonal.
Example 4.6. An object with mass m that moves in a circular path with constant

angular speed w has position vector r(t) = (acos(wt), asin(wt)). Find the force acting
on the object and show that it is directed toward the origin.
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To find the force, we first need to know the acceleration:

ww:uw:(ﬂwmmv

aw cos(wt)

—aw? cos(wt)
—aw?sin(wt) |’

a(t)=v/'(t) = (
Therefore Newton’s Second Law gives the force as

F(t) = ma(t) — —muw? <“ COS(“”) |

a sin(wt)

Notice that F(t) = —aw?r(t). This shows that the force acts in the direction opposite
to the radius vector r(¢) and therefore points toward the origin. Such a force is called
a centripetal (center-seeking) force.

4.3 Arc Length

Definition 4.4 (Length of a Curve Arc). Let there be a curve f: I — R" of class
CY(I) and let @ < b € I. The arc length of the curve f: [a,b] — R" is defined as

b
L) = [ 1€, dr
Given that the interval [a,b] is closed and bounded, L(f) < +o0.

Example 4.7. In R?, consider the circle with center ¢ = (¢, ¢p) and radius r > 0
parameterized by

(o) (a n rcos(a@)) s (cos(a@)) e

co + rsin(ad) sin(af)

where a > 0 is a constant. The length of the curve arc f: [0,27/a] — R? is

27 /a
/ radf = 2mr.
0

Example 4.8. Given a continuously differentiable function g: I — R, consider its
parameterized graph:

f(t) = (g(i&)) , tel.

For a < b € I, the arc length of the graph is therefore given by

[IE@la= [V @02 ar

Proposition 4.3 (Derivative of an Integral Depending on a Parameter). Let a < b
be two real numbers, I an open interval, and f: [a,b] x I — R a continuous function
whose partial derivative with respect to the second variable exists and is continuous
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on [a,b] x I. Then, the function F': I — R defined by

F(t) :/abF(x,t)dx

is continuously differentiable on I and, moreover, for every t € I, we have:

F(t) = /ab ‘g{(x,t) dz.

Proposition 4.4. Let a,b: R — R be of class C'(R), and f: R? — R of class C*(R?),
and define F(t) by

b(t)
F(t) = / , J@ i

Then F' is continuously differentiable on R and
/ / / b(t) 8f
F'(t) = F(b(t),t) - ¥ (1) — F(a(t),t) - d'(t) +/() S, da.
a(t

Example 4.9. 1) Given F(t) = [ %zm) dx, let us calculate F’ (i) First, note that
f(x,t) is of class C*'(R?) (which needs verification!). So it follows that
) = /71’ cos(tx)x QP (1) = /rr cos(tx)x e
0

x 0 x
1

= L sin(tx)

T=T

=0
=7 sin(7t).
Hence, we have
1 1 2
P () s (o g) =1 =2

2) Next let us find F’ (i) when F(t) = 52 % dx. We have
1 1 =t
F'(t) = sin(t- %) - (2t) + L sin(ta:)]

t2 =0

= ?sin(t‘g) + 1Sin(t3> = ?sin(t‘g).

1 1
F <> = 12sin (> )
4 64

This now gives



Chapter 5

Vector Calculus

In this chapter, we study the calculus of multivariable vector-valued functions and
vector fields. These are functions that assign vectors to points in space.

5.1 Functions with values in R™

A wvector-valued function, sometimes also referred to as a wvector function, is a math-
ematical function of one or more variables whose output values are multidimensional
vectors. In other words, it is a function of the form f: £ — R™ whose domain
dom(f) = E is a subset of R” and its image im(f) = {f(x) : x € E'} is a subset of R™.
Every vector-valued function f: £ — R can be viewed as an m-tuple of real-valued
functions,

fi(x)
f(x) = : e R™,
fm(x)
where f1,..., fm: E — R are called the component functions of f.

We have already encountered several types of vector-valued functions in this course.
For example, in Chapter 4 we discussed vector-valued functions of the form f: R —
R™, called parametric curves. Also, in Section 3.1 we introduced the gradient vector
Vf(x) and in Section 3.6 the Hessian matrix Hess(f)(x), which are both examples
of vector-valued functions. Indeed, Vf: R" — R is a vector-valued function with
domain R™ and codomain R*" = R" (where we can identify the space of n-dimensional
row vectors R'™ with the space of n-dimensional column vectors R™), and the Hessian
matrix Hess(f): R" — R™*" is a vector-valued function with domain R" and codomain
R™*n o R (where we can identify the space of n X n matrices with the euclidean
vector space R™ of dimension n?).

85
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5.2 Limits and Continuity of Vector-valued Func-
tions

The concepts of limits and continuity can be extended to functions f: R” — R™ in a
straightforward manner.

Definition 5.1. Let f: £ — R™ with £ C R"”. We say that f is defined in a neigh-
borhood of a if a is an interior point of £ U {a}.

Definition 5.2 (Limit of a function). Let a be a point in R™, and let f: £ — R™
with £ C R™ be a vector-valued function defined in a neighborhood of a. Then we
say that the limit of f(x) equals L € R™ as x approaches a, written as

)1{12% f(x) =1L, (5.1)
if given any € > 0, there exists 0 > 0 such that
O0<|x—ala<d = Jf(x)—L|:<e.

It is sufficient to check component functions for limits of vector-valued functions,
as evidenced by the next proposition, because the convergence of each component
function guarantees the convergence of the vector-valued function as a whole.

Proposition 5.1. Suppose f: E — R™ is a vector-valued function defined in a neigh-
borhood of a € R". If

fi(x) Ly
f(x) = : and L=|:

fm(x) Ly,
then lim f(x) = L if and only if lim fi(x) = L; forall 1 <i<m.

Definition 5.3 (Continuity at a point). Let a be an interior point of £. A function
f: F — R™is continuous at a if and only if, for every real number £ > 0, there exists
a real number 6 > 0 such that for all x € F|

Ix—al: <6 = [f(x)—f(a)]: <e

Continuity for vector-valued functions is ensured if and only if all component func-
tions are continuous, akin to the situation with limits. This allows known principles
about continuity of real-valued functions to generalize directly to vector-valued func-
tions, as the following proposition demonstrates

Proposition 5.2. Suppose

fi(x)
f(x) = : : E—R™

fm(x)
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is a vector-valued function and a an interior point of E. The following are equivalent:

(i) f(x) is continuous at a;
(i) limy_, f(x) = f(a);
(iii) for every sequence (ay)ien of elements of E we have

kgl—il-loo a=a = kgr-‘:l-loo f(ak> - f(a>’

(iv) fi(x) is continuous at a for all 1 < i < m.

Remark 5.1. Now that we understand what it means for a vector-valued function to
be continuous, we can revisit the definition of the class of C! and C? functions given
in Chapter 3. Let £ C R"™ be an open set and let f: £ — R be a real-valued function
in n variables. In light of Proposition 5.2, we see that f is of class C*(FE), as specified
in Definition 3.7, if and only if the gradient vector Vf: E — R" is continuous as a
vector-valued function. Similarly, f is of class C*(E), as specified in Definition 3.11,
if and only if its Hessian matrix Hess(f): £ — R™™ is a continuous vector-valued
function from E to R™*™ =~ R,

5.3 Partial and Directional Derivatives of Vector-
valued Functions

The partial derivatives of a multivariable real-valued function are real numbers (see
Definition 3.1). In analogy, the partial derivatives of a multivariable vector-valued
function are vectors.

Definition 5.4 (Partial derivatives). Let £ C R"™ be open and f: E — R™ a vector-
valued function in the variables x4, ..., z,. Then f has a partial derivative at the point
a € E with respect to the variable z; if each of its component functions fi,..., fn,
has a partial derivative at the point a with respect to the variable ;. In this case, we
denote the partial derivative of f with respect to the variable z; as an m-dimensional
column vector:

211 (a)
| m@
dw; :

94 (a)

Definition 5.5 (Jacobian matrix). Let £ C R"™ be an open set, let f: E — R™ be a

function and suppose all partial derivatives %(a), e aan(a) of f at the point a € £
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exist. The matrix

§§1<a) %3(&) gyj;(a)

s (@) 52(a) oo (a)
Df(a) = Je(a) = | " " o

%) Yn(a) ... Un(a)

is called the Jacobian matrixz or the Jacobian of f at the point a. It is an m x n matrix,
i.e., it has m rows and n columns. The columns correspond to the partial derivatives
a‘%(a)? ce %(a), whereas the rows correspond to the gradients of the component

functions Vfi(a),..., V f.(a).

When m = n, the Jacobian matrix is a square matrix and its determinant

D(fi,.. . fa) B g(@) gi(a) ... 52(a)
m(a) = det J¢(a) = f f S

is denoted as %(a) and called the Jacobian determinant of f at the point a.

Example 5.1. If f: R? — R? is f(z,y) = (zy,x + y), then J¢(1,2) can be calculated
as

Je(z,y) = <?i gi) and hence  J¢(1,2) = (? 1) :

Example 5.2. Suppose f: R® — R™ is differentiable at a € R".
e if n = m = 1 then f is a real-valued single-variable function and its Jacobian
Jg(a), which is 1 x 1 matrix, coincides with the derivative f'(a).
o if m =1 and n is arbitrary then f is a real-valued function in n variables and its
Jacobian J¢(a), which is a 1 X n matrix, is the same as the gradient Vf(a).
o if n =1 and m is arbitrary then f is a parametric curve in R™ and its Jacobian
J¢(a) is the same as the tangent vector f'(a).

Definition 5.6 (Directional derivatives). Let £ C R™ be open and f: £ — R™
a vector-valued function. Then f has a directional derivative along the vector v €
R™\{0} at the point a € E if each of its component functions fi,..., f,, has a di-
rectional derivative along v at the point a. In this case, we denote the directional
derivative of f along v as an m-dimensional column vector:

val (a)
V.f(a) = V”f 2(@)

Vo fn(a)

When |[|v]|2 = 1, it is also called the derivative in the direction v.
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5.4 Differentiability of Vector-valued Functions

We have already learned what it means for functions R™ — R to be differentiable
(see Definition 3.4), and what it means for functions R — R™ to be differentiable
(see Definition 4.3). The following definition encompasses both of these cases and
provides the general framework to discuss differentiability for multivariable vector-
valued functions.

Definition 5.7 (Differentiability at a point). Let E be a non-empty subset of R”. A
function f: £ — R is differentiable at the point a € F if there exists a linear map
L,: R*" — R™ such that

. |t (a+h) — f(a) — La(h)

2 —.
h—0 ||h|2

In this case, the linear map L, : R™ — R™ is called the differential of f at the point a.

Proposition 5.3. Let f: £ — R™ and a € E C R". Then f is differentiable at a if
and only if all its component functions fi,..., f,, are differentiable at a.

Theorem 5.1 (Fundamental theorem). Suppose f: E — R™ is differentiable at a
point a € E. Then the following statements hold.

(i) f is continuous at a.

(ii) All partial derivatives of f at the point a exist, the Jacobian matrix J¢(a) of f
at the point a exists, and the differential L,: R™ — R™ of f at the point a is
the same as matrix multiplication with the Jacobian matrix, i.e.,

La(v) = J¢(a) - v, Vv e R".
(iii) All directional derivatives of f at the point a exist and are given by
V.f(a) = J¢(a) - v, Vv e R".
(iv) For all x € E we have
f(x) =1f(a) + Je(a) - (x —a) +r1(x),
where ry is an “error” term satisfying

lim P12 _
xa [x —all

The function
t(x) =f(a) +Je(a) - (x — a)

is called the linearization (or linear approximation) of f at the point a.



90 CHAPTER 5. VECTOR CALCULUS

Among other things, the above theorem implies that if f is differentiable at a then

T (S
R Y R IO St

Voful@) ) \(Vful@),v)
for all v = (vy,...,v,) € R"\{0}.

V.f(a) =

Example 5.3. Let f: R? — R? with £(1,2) = (3, —1) and J¢(1,2) = ( 5 ' ). We can
use this limited amount of information to approximate f(1.1,1.8). Indeed, the linear
approximation of f at the point (1,2) is

t,y) = F(1,2) + 3(1,2) - ((9;) _ @)
B (—31> + <_13 _01> ' (j: ;)
_ (xz—_y;;zL) |

Thus, as an approximation of f(1.1,1.8) we obtain

£(1.1,1.8) ~ t(1.1,1.8) = (-3)133) .

5.5 Vector-Valued Functions of Class (!

Definition 5.8. Let £ C R" be an open set and let f: £ — R™ be a function. We
say that f is of class C1(E) if all partial derivatives %(a), ce %(a) of f exist and
are continuous at every point a € F.

It follows from the definition that f: E — R™ is of class C*(F) if and only if
the Jacobian matrix Je(a) exists at every point a € E and the map Jg: E — R™*"
is a continuous function. So, continuity of the Jacobian matrix is the multivariable
analogue of continuous differentiability for vector-valued functions.

Proposition 5.4. Let £ C R" be an open set, let f: E — R™ be a function, and let
fi,--+, fm: E — R be its component functions. Then f is of class C*(E) if and only
if all its component functions fi, ..., fm are of class C1(E).

Recall that real-valued functions of class C! are always differentiable (cf. Propo-
sition 3.1). The next corollary, which follows by combining Proposition 3.1, Proposi-
tion 5.4 and Proposition 5.3, asserts that the same is true for vector-valued functions.

Corollary 5.1. Let E C R" be an open set, let f: E — R™ be a function. If f is of
class C'(E) then f is differetniable at every point in E.
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5.6 The Chain Rule

The goal of this section is to introduce the chain rule for multivariable vector-valued
functions. As motivation, let us first recall the chain rule for single-variable functions
as you have learned it in Analysis I: If f: R — R and g: R — R are functions such
that ¢ is differentiable at a point a and f is differentiable at the point g(a), then the
composition f o g is differentiable at the point a, and its derivative is given by

(fog)(a) = f'(g(a)) - 4'(a).

This expresses that the rate of change of fog at a is the product of the rate of change
of f at g(a) and the rate of change of g at a.

The following theorem is the appropriate generalization of the chain rule to higher
dimensions.

Theorem 5.2 (Chain Rule). Suppose we are given an open subset A C R", a function
g: A — RP an open subset B C RP with g(A) C B, and a function f: B — RY.
Therefore, the composite function f o g: A — R? is well-defined. If a € A and
g(a) € B such that g is differentiable at a and f is differentiable at g(a), then f o g is
differentiable at a and and the Jacobian matrix Jeog(a) € R7™ is the matrix product
of the Jacobian matrices Je¢(g(a)) € R7”*P(R) and Jg(a) € RP*™:

Jeog(a) = Je(g(a)) - Jg(a).

Furthermore, if n = p = q, then the following relationship for the Jacobian determi-
nants is obtained:

[Jrog(a)| = [Je(g(a))] - [Jg(a)l

Example 5.4. Let f: R? — R and g: R* — R? with g(z,y) = (2°y, + — y) and
h = fog. Let usfind 2¢(1,2), assuming that %(2,—1) = 3 and %(2,—1) = —2.
First, the Jacobian matrix of the function g(z,y) = (2%y,z — y) is

2oy x?
Jg(&?,@/) = ( 1y _1) .

Therefore, the Jacobian at the point (z,y) = (1,2) equals

4 1
o= (1),
Also, we know that

So, it follows form the chain rule that

Vh(1,2) = V(2,—1) - Tg(1,2) = (3, —2) - (‘11 _11> — (10, 5).
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We deduce that %(1, 2) = 10.

5.7 Method of Lagrange Multipliers — multiple con-
straints

In Lagrange multipliers for a single constraint, we introduce a new variable, usually
denoted as A, called the Lagrange multiplier, to determine when the gradient of the
objective function is parallel to the gradient of the constraint function. When dealing
with multiple constraints, each constraint adds a new term with its respective Lagrange
multiplier. So, if we have m constraints then we introduce m Lagrange multipliers,
usually denoted as Ay, ..., \p,.

Theorem 5.3 (Lagrange Multiplier Theorem — multiple constraints). Consider an
open set E C R", functions f,g1,...,gm: E — R of class C'(F) and constants
c1,y...,cm € R.If the function f(x) achieves a local extreme value subject to the
constraints gi1(x) = ¢1,...,9m(X) = ¢, at a point a € E and additionally the vectors
Vagi(a),...,Vgn(a) are linearly independent then there must exist scalar numbers
Als.- s Am € R such that Vf(a) = Y7, \;Vg;(a). The numbers \; are called the
Lagrange multipliers.

Example 5.5. The planes x +y — 2z = 3 and x —y + z = —1 intersect in a line. Find
the point on this line that is closest to the origin.

In other words, we have to minimize the function f(z,y,z) = 2 + y* + 22 subject
to the two constraints

1. gi(x,y,2) =x+y—2=3,

2. go(z,y,2)=x—y+2=—1
To solve this problem using Lagrange multipliers, we need to take the partial deriva-
tives. We get

Vf(z,y,2) = (2z,2y,22)
and
Vgl(x,y,z) - (1717_]—) Vgg(x,y,z) - (17_171)

It is important do not forget checking linear dependence: The vectors (1,1, —1) and
(1,—1,1) are linearly independent. So we can use the method of Lagrange multipliers
and obtain

Vf<l', Y, Z) = )‘1Vgl(x7 Y, Z) + )‘QVQQ(xv Y, Z)
which is equivalent to

(21’, 2’y, 22) = ()\1 + )\2, )\1 — /\2, /\2 — /\1)
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This leaves us with five equations:
2r = )\1 + )\2,
2y — )\1 - )\27
2z = )\2 — )\1,
r+y—z=3,
r—y+z=-—1
Solving these equations simultaneously will give us the values of x, y, z, A, and Ag

at the critical points, which yield potential solutions to our optimization problem. In
particular, using some basic algebra, we obtain the solution

(:anvza >\17 )\2) = (1, 1, —1, 2,0)

So the point that lies on both planes simultaneously and is closest to the origin is
(1,1,-1).

5.8 Finding Global Extreme Values on compact sets
defined by inequalities.

In Section 3.11 we have seen a “3-step recipe” of how to find the global extreme values
of a functions of class C'! on a compact set. If the compact set is given by an inequality,
we can further refine this recipe as follows:

Finding Global Extreme Values on compact sets defined by inequal-
ities. Let D C R" be open and let g: E — R be of class C'(E), where
E :={x € D:g(x) <0} CD. Suppose, moreover, that E is non-empty and
compact (i.e., closed and bounded). Let f: D — R be of class C*(D). In order to
find the points where f attains a global maximum or minimum in £, it suffices to
follow these steps:
1. Determine the stationary points of f in {x € D : g(x) < 0}.
2. Determine the points x € D such that g(x) = 0 and Vg(x) = 0.
3. Determine the points x € D such that g(x) = 0, Vg(x) # 0, and there exists
A € R that satisfies Vf(x) = AVg(x).
4. Evaluate f at the points identified in steps 1, 2, and 3 above and compare
their corresponding values.

Remark 5.2.
« Do not forget to check 2!
o Do not forget to check that F is compact! Otherwise, we cannot be sure that f
attains its maximum and/or minimum.

Example 5.6. Let f : R" — R be defined by f(x) =x1 ... x, = [[\-; z;. Find the
extrema of the restriction of f to the closed unit ball.
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Here, g(x) = > ;27 — 1 for x € R". The functions f and g are continuously
differentiable, and the set £ = {x € R" : g(x) < 0} is compact. Suppose first that
g(x) < 0, which is equivalent to ||x||o < 1. In this region, any point with at least two
coordinates equal to zero is a stationary point of f, since the gradient of f vanishes
there.

We want to find x € R" and A\ € R such that:

[z =1

T1Ty -+ ... Ty = 2013,
Ty ... Ty = A217,

T1Ty ... Ty = 2\,
T3 Ty = A2, &

1T Ty = 202,

Ty Ty = A2,
Adding up all these equations, we obtain:
nf(x) = 2\x[3 = 2\.

Therefore, A = —)

If f(x) =0, then A = 0and V f(x) = 0, which implies that at least two coordinates
of x must be zero.

If f(x) # 0, then we have:

f(x) =2 2 = 2)\25 = ... = 2)\22.

This leads t + for all i € {1,. }, and h jzl il
s leads to x; = or a a ence x = |+——, ..., —|.
i z; = £ for all s ,n}, and hence x N AR

2™ possibilities
Comparison:
e fJdi#jst. zy=2;,=0= f(x)=0.
. Ifx—( \/ﬁ,...,j:ﬁ),thenf() ( ) =4n3.

Answer: If x = (i\lf,...

negative signs, then f attains its maximum (respectively, minimum) in F, with value
n~2 (respectively, —n~2).

iﬁ) with an even (respectively, odd) number of

5.9 Vector Fields R" — R"

In general, a multivariable vector-valued function describes a mapping from R"™ to R™,
where n represents the input dimensions and m denotes the output dimensions. If the
number of input dimensions equals the number of output dimensions (i.e., n = m), then
such a function has called a vector field. Vector fields show up often in many natural
situations and find important applications. For example, in physics they describe
magnetic and electric fields or the velocity field of a fluid. Coordinate changes are also
applications R" — R™.
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Graphic representation. Let U C R". A vector field v: U — R" is represented
graphically by an arrow (i.e. a vector) attached at each point x € R™.

R A N R 2 A A N R RN A
A A R A L AN N WA W [ O O O R R A o
AR I I T L N N o A I B O O O O e
T T T N N N N B B O O R S R e
“\k//ll\\\\ﬂ”/ﬂ\\’\\*\ v[xllll&\y\ A A T e P
k///fl\\Qi”//ffY\\&k O R N R S N A
/A/a/n//fl\“/'/v//q/qff\\k/ u//!/!llLX\’\\wﬂ»»//vﬂ/
///////"///////”// p/p//./flll\\i\ﬂaa/'///’/"/v
VA ALV NS VA A A N B B RN N A
[/ /v A/ 7=\ S A AAAAAA AN s s PP
DT 7o XNt /o NN\ R/ R T AR
ISR N N N VA VA T AR T NN Vi VA VAN e RN NN,
NN O ARARRARARIN Y OANNNNNN s e eV PR
Se P EARARRN S - 2 PAVANNNNSY vre e NV PR
e A B L N e B B R R ket N ¥ AL U U N N O B A A
B B N A B B N L N A UL U U N B Y A A
DYV NN A R e S AR R R R B
IR e i WSS b e ANRAA T T T ]
PP A\ Jfwee~nt ! H*@—K&K\\\\\\\\RXTTT

N SN I R e N SRR R R

_xty
sin(m(z +y)) Vit ed)
(xvy)H (COS(?T( y))> (x,y)H - 4(12+y )

Figure 5.1: Graphic representation of vector fields.

Example 5.7. Newton’s Law of force between two objects with masses m and M is

| =

2

where 7 is the distance between the objects and G is the gravitational constant. (This

is an example of an inverse square law.) Let’s assume that the object with mass M is

located at the origin in R3. For instance, M could be the mass of the earth and the

origin would be at its center. Let the position vector of the object with mass m be

x = (x,9,2). Then r = ||x|2, so r? = ||x||3. The gravitational force exerted on this

second object acts toward the origin (compare with Example 4.6), and the unit vector
in this direction is

X

x|
Therefore, the gravitational force acting on the object at x = (z,y, z) is

GmM

—X
<l

F(x)=— (5.2)
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(Physicists often use the notation r instead of x for the position vector, so you may
see (5.2) written in the form F = — (GZgM) r.)

An example of a vector field is the gravitational field, because it associates a vector,
the force F(x), with every point x in space.

Equation (5.2) is a compact way of writing the gravitational field, but we can also
write it in terms of its component functions by using the facts that x = re; +yes+ zes

and x|l = v/aTF 57 F 22
—GmMz —GmMy —GmMz
2 2 2 3/2€1 + 2 2 2 3/2€2 2 2 2
(22 + 2 + 22) (22 4+ y? + 2?) (22 +y*+ 2

F(z,y,2) = )3/2 €3

The gravitational field F is pictured in Fig. 5.2.

Z)

Figure 5.2: Depiction of a gravitational vector field.

Example 5.8. Consider an electric charge @) located at the origin (0,0,0). According
to Coulomb’s Law, the electric force F(x) exerted by this charge on a point charge ¢
located at the position x = (z,y, z) is

F(x) £4(

IR

(5.3)

where ¢ is a constant (that depends on the units used). For like charges, we have
q@ > 0 and the force is repulsive; for unlike charges, we have ¢@) < 0 and the force
is attractive. Notice the similarity between (5.2) and (5.3). Both vector fields are
examples of so-called force fields.

Instead of considering the electric force F, physicists often consider the electric
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field per unit charge:

B(x) = 1F(x) = -2

= X
q %13

Then E is a vector field on R? called the electric field of Q.

If f: R" — R is a real-valued function of n variables then its gradient Vf is a
vector field on R™ and it is called the gradient vector field of f.

Definition 5.9. A vector filed F: R — R" is called conservative if there exists a
real-valued function f: R®™ — R such that F = V7. In this situation, f is called a
potential function for F.

Example 5.9. While not all vector fields are conservative, vector fields arising in
physics often are. For example, the gravitational field F in Example 5.7 is conservative
because if we define

mMG
J@9.2) = o
then
V(g ) = ( —mMGzx —mMGy —mMGz )
T (@2 + 92+ 227 (@24 y2+ 22" (a2 92 + 22)°7

= F(x,y,z)T.

A similar calculation can be done for the electric field E of a charge () seen in Exam-
ple 5.8.






Chapter 6

Multiple Integrals

6.1 Integrability of a bounded function on a closed
rectangle

Recall that the definite integral of a non-negative function f(z) > 0 represented the
area “under” the curve y = f(z). As we will now see, the double integral of a non-
negative real-valued function f(z,y) > 0 represents the volume “under” the surface
z = f(z,y).

The goal is to extend the theory of Riemann integrals to real-valued functions in
two real variables. Let a < b and ¢ < d be four real numbers and consider the closed
rectangle R = [a,b] X [c,d] and a non-negative continuous function f: R — R. To
approximate the volume “under” the surface z = f(z,y), we can use a subdivision of
R into smaller rectangles. This is accomplished by dividing the interval [a,b] into n
equidistant subintervals and [¢, d] into m equidistant subintervals. This will create a
grid of rectangles R; ; over the region R. Let Az = I’_T“ and Ay = % be the widths
of the subintervals along the z-axis and y-axis respectively.

To establish the Riemann sum, we also need to choose a sample point (z7, y;‘) in
each subrectangle R; ;. A common choice is the bottom-left corner of each rectangle,
but one can choose any point within each rectangle. For each subrectangle R; ;, we
can now compute the volume of the thin rectangular solid formed by multiplying the
function value at the sample point (27, y7) by the area of the subrectangle Area(R; ;) =
AxAy (see Fig. 6.1). This gives you the approximate volume of the portion of the
surface that lies over that rectangular solid.

Summing up all the volumes obtained will then yield an approximation of the
volume under the surface z = f(z,y) over the rectangle R.

Definition 6.1 (Double integral). Let @ < b and ¢ < d be four real numbers, and
f: R=la,b] X [c,d] — R a function. If the limit

J] fayydudy = tm 373 flaty) ey

i=1j=1

exists then we say that f(z,y) is Riemann integrable over R. In this case, the number

99
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z:f(x,y)

Figure 6.1

[fr f(x,y)dxdy is called the double integral of f(z,y) over the rectangle R = [a, b] x
e, d].

Proposition 6.1. Let a < b and ¢ < d be four real numbers, R = [a,b] X [c,d] and
f: R — R be continuous on R. Then, f is integrable on R.

6.2 Fubini’s Theorem for Double Integrals

Let a < b and ¢ < d be four real numbers, and f: R = [a,b] X [¢,d] — R a continuous
function. Then the two functions g: [¢,d] — R and h: [a,b] — R, defined respectively
by

o) = [ Fle,v)dz and () = [ £ )y

are continuous. Thus, the two numbers

[ oy = [ (/abf(x,y)dx> dy
/abh(x)dx - /ab (/d f(x,y)dy> d

are well defined. Fubini’s theorem says that these two numbers are the same and
coincide with the double integral of f over R.

and

Theorem 6.1 (Fubini’s theorem for double integrals — rectangular regions). Let a < b
and ¢ < d be four real numbers, and f: R = [a,b] X [¢,d] — R a continuous function.
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Then
I ey = [ (/abf(w,y)dx> = (/Cdm,y)dy) on.

Example 6.1. Let R = [0, 7] %[0, 1] and f: R — R be the continuous function defined
by f(x,y) = xsin(zy). Then, the integral of f over R is given by

//Rf(x,y)dxdy:/; </lesin(xy)dy> dx:/oﬂ—cos(xy)

T
= T.

y=1
dx

y=0

— /Oﬂ(l —cosx)dr = (r —sinx)

0
We can switch the order of integration because the region R is a rectangle, but in this
case, integrating with respect to y first (as we did above) makes the calculation much
simpler than starting with x. This shows that sometimes choosing the right order of
integration can make a big difference in how easy the problem is to solve.

Example 6.2. Our goal is to find the volume of the solid S that is bounded by the
elliptic paraboloid z? + 2y? + 2z = 16, the planes z = 2 and y = 2, and the three
coordinate planes.

X242y’ +z=16

Figure 6.2

We first observe that S is the solid that lies under the surface z = 16 — 2% — 2y
and above the square R = [0, 2] x [0, 2]. (See Figure 6.2.) This solid was considered in
Example 1, but we are now in a position to evaluate the double integral using Fubini’s
Theorem. Therefore
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<
I

(16 — 2% — 2¢y%) dx dy
2
(16 — 2% — 2¢y%) dx dy
0

1
16x—§$3—2y2x
88
— —4 2) d
<3 V)

y_

2
dy
0

I
o\lsﬁﬁg

I
=

2

Theorem 6.2 (Mean Value Theorem). Let a < b and ¢ < d be four real numbers and
f: R=la,b] x[e,d] = R a continuous function. Then there exists an element (xq, yo)
in R such that

//R f(z,y)drdy = f(xo,10) - Area(R)

6.3 Double Integrals over general regions

Consider a general region D in R? like the one illustrated on the left-hand side of
Fig. 6.3. We suppose that D is a bounded region, so D can be enclosed in a rectangular
region R as illustrated on the right-hand side of Fig. 6.3. In order to integrate a function
f: D — Rover D we define a new function F': R — R with domain R by

x, if (x,y) € D,
F(z,y) = f@) .( v) (6.1)
0 if (z,y) € R\D.
y ¥
R
0 X 0 X
Figure 6.3

Definition 6.2. We say that f: D — R is integrable over the region D C R? if the
function F', as defined in (6.1), is integrable over the rectangle R.
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Properties of double integrals: Suppose f: D — R and g: D — R are integrable
over the region D C R2. Then the double integral has the following properties
1. Linearity: For all a, 3 € R we have

//D(af-i—ﬁg)(ﬁ,y)dxdy:Oz//Df(x,y)dxdy—l—ﬁ//jjg(m,y)dxdy

2. Monotonicity: If f(z,y) < g(x,y) then

//Df(x,y)dxdyé//Dg(x,y)dxdy.

3. Positivity: If f(z,y) > 0 then

|| @y dedy >o.

Moreover, if D is open and f is continuous then

// f(z,y)dxdy =0 if and only if f(z,y) =0 for all (z,y) € D.
D

4. Triangle Inequality: We have

‘//Df(x,y)d:vdy‘<//D|f(a:,y)|da:dy

Proposition 6.2 (Double Integral over a Subset). If f: D — [0, +00) is bounded and
integrable on the bounded subset D C R? and if f: D' — [0,+00) is integrable on
D' C D, then

//D,f(x,y)dxdyé//Df(a:,y)dxdy.

6.4 Jordan sets

A Jordan set in two dimensions, also known as a Jordan region or Jordan domain,
refers to a bounded subset of the plane R? that has a well-defined boundary. More
formally, a Jordan sets are defined as follows.

Definition 6.3. A bounded subset D of R? is a Jordan set (in R?) if for every ¢ > 0
there exists & € N and closed rectangles Ry, ..., R, C R? such that

k k
0D C U R; and ZArea(Rj) <e.
j=1 j=1
Intuitively, a Jordan set in two dimensions is a well-behaved region with a clear
and distinct boundary. This makes it particularly suitable for integration. Examples
of Jordan sets include all polygons (triangles, quadrilaterals, etc.), circles, ellipses, and
many more.

Theorem 6.3. Suppose D C R? is a bouqded set and f: D — R is a bounded
function. If f is continuous on the interior D and D is a Jordan set then f(x,y) is
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integrable over D.

In this section, we generalize the definition of the Riemann integral of a bounded
function on a closed rectangle to a bounded function on a bounded subset of R2.

Definition 6.4 (Area). Let D be a Jordan subset of R?. Then the real number

area(D) ://Dldxdy.

is called the area of D.

Proposition 6.3 (Bounds of the double integral). Let D be a Jordan subset of R?,
and f: D — R be a bounded function that is integrable on D. Then,

m - Area(D) < //D f(z,y)dxdy < M - Area(D),
where m = inf{f(z,y) : (z,y) € D} and M = sup{f(z,y) : (z,y) € D}.

To find the average value of a function f(z,y) over a region D, divide the double
integral [[, f(x,y) dz dy by the area of the region, Area(R); this yields a single number
representing the typical value of the function over D.

Definition 6.5 (Average value). Let D be a Jordan subset of R? and f: D — R be
a bounded function that is integrable on D. Then the average value of f over D is
defined as

1

Average = Area(D) //D f(z,y)dxdy

Example 6.3. A metal plate in the shape of a rectangle extends from x =0 to z =4
meters and from y = 0 to y = 3 meters. The temperature at any point on the plate is
given by the function

T(x,y) =100 — 2* — y*,

where T'(z,y) is measured in degrees Celsius. Let us find the average temperature of
the plate. The average value of T'(z,y) over the rectangle R = [a, b] X [c, d] is given by

1
Average = Area(R)//R f(x,y) dx dy.

In our case, Area(R) = (4 — 0)(3 — 0) = 12. Using Fubini’s theorem, we can compute
the double integral as

3 4
// (100 — 2% — y*) dv dy = / / (100 — 2% — y*) dz dy.
R 0 Jo

The inner integral yields

; 64 64
100 = 2% — ) do = (100 - y2)(4) - = = 400 — 4y? — =
0
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Now integrating with respect to y gives

3 64 3 /1136
/ <4OO — 4y2 — ) dy = / < — 4y2> dy
0 3 0 3

1136 4431° 1136 4
:l y] = 53— 527 = 1100,

Y
3 3 |,

So the average temperature equals

1 1100 275
— 1100 = —— = 22 x 91.67°C.
o 1100 = =25 = =5 = 9167°C

6.5 Vertical and horizontal slice methods

Suppose that we have a region D in the zy-plane that is bounded on the left by the
vertical line © = a, bounded on the right by the vertical line x = b (where a < b),
bounded below by a curve y = p;(x), and bounded above by a curve y = ps(x), as in
Fig. 6.4. We will assume that ¢;(z) and ¢5(z) do not intersect on the open interval
(a,b) (they could intersect at the endpoints + = a and = = b, though). Then the
integral of a continuous function over this region can be computed using the vertical
slice method.

y = p2(z)

y = o1(z)

S~ - ==

Figure 6.4:  Double integral over a non-rectangular region D using the vertical slice
method: [fp, f(z,y)dwdy = [} [25) f(x,y) dy da.

Theorem 6.4 (Vertical Slice Method). Let a and b be two real numbers, and 1, ps: |a, b] —
R be two continuous functions such that for every z € (a,b), ¢1(x) < ¢a(x), and let
D be the open bounded subset of R? defined by:

D= {(x,y) ER*:a<z<by(r)<y< 902(x)}.
Then, for any continuous function

fiD={(z.y) eR* a<z<bpi(a) <y<ga(a)} 2 R,
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we have:

[ stenasay= [ sendsay= [ ([7 o)) a

Corollary 6.1. Let a < b be two real numbers, and let ¢y, @y: [a,b] — R be two
continuous functions such that for all x € (a,b), p1(z) < p2(z), and let D be the open
bounded subset of R? defined by

D = {(:U,y) ER* :a<z<by(z)<y< 302(:1:)}.
Then,

Area(D) = Area(D) = /ab (p2(x) — @1(x)) da

Figure 6.5:  Double integral over a non-rectangular region D using the horizontal
slice method: [[,, f(z,y)dzdy = [* fﬁZ((yy)) f(z,y) dx dy.

In certain situations, it is advantageous to use horizontal slices instead of vertical
ones, see Fig. 6.5.

Theorem 6.5 (Horizontal Slice Method). Let ¢ and d be two real numbers, and
1,109 [c,d] = R be two continuous functions such that for every y € (c,d), ¥1(y) <
¥y(y), and let D be the open bounded subset of R? defined by:

D={(x,y) R :c <y <dunly) <z <valy)}.

Then, for any continuous function f: D — R we have:

[ aas= [ steaasan= [ ([ sea) ay

Corollary 6.2. Let ¢ < d be two real numbers, and let 11,15: [c,d] — R be two
continuous functions such that for all y € (¢, d), ¥1(y) < ¥2(y), and let D be the open
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bounded subset of R? defined by
D = {(a;,y) eER:c<y<d(y) <z < wz(y)}.
Then,

Area(D) = Area(D) = /Cd (2(y) — 1 (y)) d

Example 6.4. Let D = {(z,y) e R*:0<2z<1,0<y<1—2z} and f: D — R be
the continuous function defined by f(z,y) = 6*2Y. Hence,

// :zzydxdy—/ 655(/1 m%’dy)dx
e (e

S

/ z(In2+In3)—zln2+In2 xlnG) dz
" In2

1 4 5
2 xIn3 x1In6 T <_> .
ln2/ ) de = 2 \In3 Iné6

Example 6.5. Let D = {(z,y) e R?: 0 < x <y < 2z, 2% + y* > 4,7y < 4} (see Fig. 6.6)
and f: D — R be the continuous function defined by f(z,y) = xy.

Then, denoting by 1, p2: [2/v/5,2] — R the two continuous functions defined
respectively by
() Vi —a2? ifz e [2/V5,V2]
€Tr) =
! x if 2 € [v/2,2]

and

(2) = 2v  if x € [2/V/5,V2)]
PR = 4)x if z € [V2,2]
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Y " ,
\ ’
o y=2
\
, _
\\ y—l’
2’”‘*\\ ~oxy=4
/ \\
’ S
/ \\\
7/
1 /
y Circle
, \
/ \
e \l X
2
s V2 2

Figure 6.6: Depiction of D = {(z,y): 0 <z <y < 2z, 2> + y* > 4,2y < 4}.

we obtain that D = {(m,y) €ER2:2/\V5 <1 <2,p(z)<y< ch(m)}. Consequently,

$ T / T

4P —z - (4— f/ 16 —
=5 2/\f(x z - ( 5 3
1

174 1 V2
:<m4—x2-(4—x) <161nx—x>
2 \4" T2 e
3
=——+4In2.
5T

2

V2

Example 6.6. Let us find the volume V of the solid bounded by the three coordinate
planes and the plane 2x + y + 42z = 4. The solid is shown in Fig. 6.7 (left) with a

Figure 6.7
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typical vertical slice. The volume V' is given by the double integral of the function
f(z,y) = 2= 1(4—2x—y) over the region R = {(z,y): 0 <2 <2, 0<y < —2z+4},
shown in Fig. 6.7 (right). Using vertical slices in R gives

V = //i(4—2x—y)dxdy
R

2 p-2atd
= /0 (/0 4(4—2x—y)dy> dx

2 y=—2a+4
— /0 <i(4y — 2xy — %y2) ) dx

y=0
2
= /0 (2 — 2z 4 32%) do

2

_ .2 ,1.3 _ 4
= 2z e = 3.

0

We conclude that the volume V' equals %.

Corollary 6.3 (Fubini’s theorem for double integrals — general regions). Let a < b and
¢ < d be real numbers, and ¢1,ps: (a,b) — R and ¢1,1s: (¢,d) — R be continuous
functions such that

D= {(m,y) ER?*:a<w<byp(z)<y< @2(33)}
= {(x,y) ER:c<y<di(y) <z < wg(y)}.

Then, for any continuous function f: D — R we have:

[ ([ ) as= ([ stea)

Example 6.7. We are given the integral
L[l 36y°
=[] dz | dy.
0 ( v 1+ xt x) 4

Note that the integrand f’iﬁ separates into a function of y and a function of x, but
the limits of the integrals are interdependent. To simplify, we change the order of
integration. The region of integration is:

e y€]0,1]

« For each y, z € [y°, 1].

This corresponds to:

s T E [07 ]']
« For each z, y € |0, $1/3]

So we change the order of integration:

1 zl/3 36y8
= / / dy | da.
0 ( 0 1+ az* y) v
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Now factor out the part independent of y:

1 x
]:/36 /
o 1+x* \Jo

Evaluate the inner integral:

1/3

y® dy) dx.

1/3

2173 972 3
Sgy = |L] =2
/0 v l9 9

0

Substituting:

136 g 1 43
[:/7~—d = [
o l+at 9T fh1x ™

Let u = 2%+ 1, so du = 423dex. When z = 0, v = 1, and when 2 = 1, v = 2. Thus,

I 21d 1
= | —du=1n(2).
| 5 du=1m(2)

6.6 Change of variables for Double Integrals

Given the difficulty of evaluating multiple integrals, the reader may be wondering if
it is possible to simplify those integrals using a suitable substitution for the variables.
The answer is yes, though it is a bit more complicated than the substitution method
which you learned in single-variable calculus.

Recall that if you are given, for example, the definite integral

2
/ 23Vr? — 1dx |
1

then you would make the substitution

u=212>—-1
du = 2z dx

which changes the limits of integration

r=1 — u=0
r=2 — u=23

so that we get

2 2
/a:?’\/a:Q—ldx = / %xQ-Qx\/xz—ldx
1

1

_ /gg(uﬂ)\/adu

0

3
= %/0 (u3/2+u1/2> du
_ 143

=
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Let us take a different look at what happened when we did that substitution, which
will give some motivation for how substitution works in multiple integrals. First, note
that on the interval of integration [1, 2], the function x — z? — 1 is strictly increasing
and maps [1, 2] onto [0, 3]. Hence it has an inverse function g: [0, 3] — [1, 2], which we
can calculate as

glu) = vu+1.

Then substituting that expression for x into the function f(z) = x3v/22 — 1 gives

fl@) = flg(u) = (u+1)**Vu,
and we see that

dr = g'(u)du
dr = %

SO since

[ = 77 rlatu) o) du
_ /03(u 1Y L+ 1)V du

_ /O?’;(UH)\/MU

143
2
In general, if g: [c,d] — [a, b] is a bijective, differentiable function from an interval
[c, d] onto an interval [a, b] with a = g(c¢) and b = g(d), then

[ 1@ = [ flotw) @) du 6:2)

This is called the change of variable formula for integrals of single-variable functions.
This formula turns out to be a special case of a more general formula which can be used
to evaluate multiple integrals. We will state the formulas for double integrals involving
real-valued functions of two variables next. We will assume that all the functions
involved are continuously differentiable and that the regions and solids involved are
Jordan sets (i.e., have “reasonable” boundaries).

Theorem 6.6 (Change of variables for double integrals). Let D and E be two open
Jordan subsets of R? and let ®: E — D be a bijection from E to D. Additionally, it is
assumed that the vector-valued function ® is of class C*(E) and its Jacobi determinant
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(cf. Definition 5.5) is bounded over E and satisfies
det Jg(u,v) #0

for every (u,v) € E. Then, for any continuous and bounded function f: D — R we
have:

//D f(z,y)dz dy = //E f(®(u,v))|det Jg(u,v)|du do,

where the absolute value of the Jacobian appears in the integral.

Example 6.8. Let us evaluate the double integral

// ety dx dy
D

over the closed region D = {(z,y) : x >0,y > 0,z +y < 1}.

First, note that evaluating this double integral without using substitution is proba-
bly impossible, at least in a closed form. By looking at the numerator and denominator
of the exponent of e, we will try the substitution u = x —y and v = x +y. To use the
change of variables formula, we need to write both x and y in terms of v and v. So
solving for  and y gives v = 3 (u+v) and y = 5(v—u). This gives the map ®: E — D
as

Dy (u,v) = ;(u—i-v)
Dy (u,v) = ;(v —u),

where F = {(u,v) : 0 < v <1, —v < u < v}. In Fig. 6.8, we see how the mapping
® = (P, Py) maps the region £ onto D in a one-to-one manner.

Yy v
) x—%(u—l—v) 1
rhy=1 y=35(v—u) E
U= —v u=v
D x U
0 1 -1 0 1

Figure 6.8:  The regions D and E

Now we see that

det Jg(u,v) = |_

N[ N
N[ DN
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so using the horizontal slices method in E, we have

//e%zda:dy = %//e%dudv
D E

Example 6.9. We aim to evaluate the following double integral:

// e reyty® Q4 dy
D

where D = {(z,y) € R? : 2° + 2y + y* < 1,y > 0}. Given that for every (z,y) € R*

2 2 1\ 3,

rT+xy+y :<x+y> + -y,
2 4

V3

2

x:u—%vandy:%v. Taking £ = {(u,v) € R: u?> +v? < 1,v > 0}, we obtain a

map ®: £ — D defined by

we introduce the change of variables u = = + %y and v = ( ) y, which translates to

1
o —u—
1(u,v) =u \/§U
and
2
Dy (u,v) = v,

V3

which is a bijection from F to D. Thus, since for all (u,v) € E,

=

1 —L
det Jg(u,v) = ’ 0 i/g
V3

2
=—>0,

V3

we obtain, thanks to Theorem 6.6, that

2 2 2 2 2
retxy+y — u“+v
//D e dx dy 73 //E e du dv.

Moreover, as the map
U:F={(rd)eR*:0<r<1,0<f<n}—>E

defined by Wy(r,0) = rcos@ and Wy(r,d) = rsinf (polar coordinates) is an injection
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from F to E and for all (r,0) € F:

cosf) —rsind

det Jg(r, 0) = sinf@ rcosf

‘:r>0,

we can write, using Theorem 6.5 and Theorem 6.6, that:

™ 1
// e+ dudv = // e“rdrdf = / </ re” dr) do = I(6 —1).
E F 0o \Jo 2
// P2yt g dy =
D

Hence,

(e—1).

S

6.6.1 Polar coordinates

As seen in Example 6.9, the change of variables formula can be used to evaluate double
integrals in polar coordinates.
Recall that in polar coordinates, points in the plane R? are specified using two
parameters:
1. Radial distance (r): This measures the distance from the point (z,y) to the
origin (0, 0).
2. Polar angle (¢): This angle is measured counterclockwise from the positive
x-axis to the line segment connecting the origin and the point (x,y).

(CL’, y) = (I)(T‘, 6)

This representation provides a convenient way to describe circular or radial symmetry

and is particularly useful for analyzing problems involving rotation or circular motion.
In mathematical terms, the change from polar coordinates to Cartesian coordinates

corresponds to a transformation ®: (0,00) x [0, 27) — R?\{(0,0)}, given by

®y(r,0) = rcosf and Py(r,0) = rsind.
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Note that the Jacobian determinant of this transformation is
cos —rsinf

sinf rcosf

det Jg(r,0) =
Following from Theorem 6.6, the change of variables in a double integral from Cartesian

to polar coordinates is expressed by the following formula.

Double Integral in Polar Coordinates. We have
(6.3)

é/f(x,y)d:vdy = é/f(rcos@,rsin@)rdrd@,

where FE is a description of the region D in polar coordinates.

Example 6.10. Find the volume V inside the paraboloid z = 22 4+ 2 for 0 < z < 1.

******

T
Figure 6.9: The paraboloid z = 22 + y2.

The volume can be computed using a double integral,
vV = //(1 —z)dxdy = //(1 — (2* +¢?)) da dy,
D D

z? + y? < 1} is the unit disk in R? (see Fig. 6.9). In polar

coordinates (r, ), we know that 2%+ y* = r2. So the unit disk D in polar coordiantes

where D = {(x,y)
corresponds to the set £ = {(r,0) : 0 < r < 1,0 < 6 < 2x}. Thus, changing the
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double integral into polar coordinates gives

V= [[0- @) dedy
= //(1—7"2)7“0[7“0[0

= /02”/01(1—7“2)rdrd9

Thus we have V = g

Let ¢ = (a,b) be an element of R?, r a positive real number, and f : B(c,r) — R
a continuous function. Then,

dxdy = dxd

//B(w)f(x?y) zdy //B(w)f(x,y) zdy

ﬂ(/r a—l—rcos@,b—l—rsin@)rdr) de
0

:/02
:/0’"

I
(/Ozwf(a—I—TCOS@,Z)—I—TSin@)TdQ) dr.

Example 6.11 (Double Integral of a Continuous Function over a Closed Annulus).
Let ¢ = (a,b) be an element of R? r; < 7y two positive real numbers, and let E be
the open bounded subset of R? defined by

E= {(a:,y) eER*:z=a+rcosb,y=>b+rsinb, r <T<r2,0<9<27r}.
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Then, for any continuous function f : £ — R, we have:

J[ fay)dzdy = [[ fa.y)dady
:/027r (/rzf(a+rcos€,b+rsin0)rdr) dé

T1

T 2
:/2 (/ f(a—i—rcosé’,b—I—rsin@)rd@) dr.
T1 0

Example 6.12. Find the area enclosed by the circle {(r,0) : r = 3cosf, =5 <0 < T}
and the cardioid {(r,0) : =1+ cosf, 0 < 0 < 27}.
First, we start by sketching the graphs of the region:

Y

r=3cosb

r=1+cosf

We can see from the symmetry of the graph that we need to find the points of
intersection. Setting the two equations equal to each other gives

3cosd =1+ cosb.

The two solutions, corresponding to the two points of intersection, are § = /3 and
0 = —m /3. The area above the polar axis consists of two parts, with one part defined
by the cardioid rom # = 0 to § = 7/3 and the other part defined by the circle from
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0 = /3 to § = w/2. By symmetry, the total area is twice the area above the polar
axis. Thus, we have

w/3 pl4cosf w/2 p3cosf
A:2</ / 1rdrdf + / / 17"de9).
0 0 7/3 Jo

Aq Ao

Evaluating each piece separately, we find that

w/3 pl4cos6
A= [T rards
0 0

/311 1+4cos 6
e
0 2 0

do
/3 1
:/ —(1 +cosh)?df
o 2

1 r7/3 5
25/ (1+2cosf + cos™0) df
0

1 /3 w/3 /3 9
_ / 1d9+2/ cos0d0+/ cos2 0 do
0 0 0

2

1|7 V3 1 (rm V3 T 93
S ST T S (NG S [ T S
2[3+ 2+2<3+4>] 4+ 16

A similar calculation reveals that

This gives that

A:2A1+2A2: i’ﬂ'.

6.7 Triple and Multiple integrals

The purpose of this section is to extend Riemann integrals to real-valued functions in n
real variables for arbitrarily large n. We already treated the case n = 2 in Section 6.1,
where we discusses that the double integral ([ f(z,y) dz dy of a function f(x,y) in two
variables over a closed rectangle R = [a,b] X [c, d] corresponds to the volume “under”
the surface z = f(x,y) and “over” the rectangle R.

Now suppose n is an arbitrary positive integer. A subset P of R™ is called a closed
box (or sometimes also an n-dimensional closed hyperrectangle), if it can be written in
the form

P = [al,bl] X ... X [an,bn]

where a1 < by,as < by, ..., a, < b, are 2n real numbers. Given a real-valued function
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f: P — R, the multiple integral

/ /f Tiyeoos@y)dry - day (6.4)

corresponds to the hypervolume “under” the hypersurface z = f(zq,29,...,2,) and
“over” the box P.

To properly define the expression (6.4), we use Riemann sums, just as we did in
the n = 1 and n = 2 cases. We can partition the box P into smaller boxes. This is
achieved by dividing each interval [a;, b;] into k; equidistant subintervals, yielding a
grid of hyperrectangles P ;, ;. over the region P. Let Az; = bké“ denote the width
of the subintervals of the interval [a;, b;]. Z

To construct the Riemann sum, we select a sample point (x} ,z;,,...,x; ) within
each P, ;, ... A conventional choice is a corner point, but any point within the
hyperrectangle suffices. Then for each F;, ;, i, we compute the hypervolume of the

thin hyperrectangular solid above it by multiplying the function value at the sample

point (zj ,z} ,...,x; ) by the hypervolume of the region P ,, . ., which is Az, -Ax,-
.+Az,. Summing all such hypervolumes yields an approximation of the hypervolume
under the hypersurface z = f(z1, s, ..., x,) over the box P.

Definition 6.6 (Triple integral). Let P = [ay, b1] X [ag, bs] X [as, bs] be a box in R3
and f: P — R a function. If the limit

//Pf(m,y,z)dxdydz

= lim Z lim Z lim fo“,xww%) Axy - Axy - Axs

k:1—>oo A kg OO A k3—)<>0 P

exists then we say that f(x,y,z) is Riemann integrable over P. In this case, the
number [f[p f(z,y,2)drdydz is called the triple integral of f(z,y,z) over the box
P = [al,bl] X [ag,bg] X [ag,bg].

Definition 6.7 (Multiple integral). Let P = [a1,b1] X ... X [ay,b,] be a box in R"
and f: P — R a function. If the limit

/ /fxl,..., Vdzy - - -

k1
:1' ...1 . * 'A ~A ....,A
kll—r>noo z’lz::1 k gnoo Z f 17 127 75’71”) T1 ) Tn
exists then we say that f(z,...,x,) is Riemann integrable over P. In this case, the

number [--- [p f(x1,...,2,) dxy - - - dx, is called the multiple integral of f(x1,...,x,)
over the box P = [ay,b1] X ... X [an, by].

For continuous functions, we can break down the multi-dimensional integral into
a sequence of one-dimensional integrals, and one can do so in any order. This makes
calculating complicated integrals in multiple dimensions much more manageable by
breaking them down into simpler steps.
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Theorem 6.7 (Fubini’s theorem for triple integrals). Let P = [a,b] X [¢,d] X [e, f] be a
closed box in R?* and f: P — R a continuous function. Then f is Riemann integrable

over P and
Wi [ ([ ([ t0007) )

Example 6.13. Let us evaluate the triple integral

///R(xy+z)dmdydz

over the box R = [0,1] x [0,2] x [0, 3]. We have

3 2 1
///(xy—l—z)d:pdydz = / / /(wy+z)dmdydz
R o Jo Jo
3 r2 =1
= / / (ény + xz ) dy dz
0 JO T

=0

3 2 1
:/0/0(§y+z) ydz
3 y=2
— / <1y2+yz )dz
0 y=0

3
- /(1+22)dz
0
= 12.

3
0

= 2422

Theorem 6.8 (Fubini’s theorem for multiple integrals). Let P = [ay,b1] X ... X [ay, by]
be a closed box in R™ and f: P — R a continuous function. Then f is Riemann
integrable over P and

/---/Pf(atl,...

L da,

( / b ( ) ( [ s ) dx1> ) dg;n_1> i

, Ty) dx
I8
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Moreover, the order of integration does not affect the value of the multiple integral,
and one can rearrange the individual integrals in any order.

6.8 Multiple Integrals over general regions

Let S be a bounded subset of R", where n is any positive integer. Since S' is a bounded
region, it can be enclosed in a hyperrectangle R = [ay,b1] X ... X [a,, b,] in R™. To
integrate a function f: .S — R over the region S, we define a new function F': R — R
with domain R by

) flx) ifxes,
Fx) = {0 it x € R\S, (6:5)

where x = (z1, 29, ..., Ty,).

Definition 6.8. We say that f: S — R is integrable over the region S C R" if the
function F, as defined in (6.5), is integrable over the hyperrectangle R.

Properties of multiple integrals: Suppose f: S — R and ¢g: S — R are integrable
over the region S C R™. Then the multiple integral has the following properties:

1. Linearity: For all a, 8 € R we have

/-~-/S(af+ﬁg)d$1---dxn=Oé/---/sfdxr--danrﬁ/---/Sgdxr--dxn-

2. Monotonicity: If f(x) < g(x) for all x € S then

/---/fdxl---dxng/---/gdxlmdxn.
S S

3. Positivity: If f(x) > 0 then

/-~-/fdm1---dxn>o.
s

Moreover, if S is open and f is continuous then
/~--/fd:v1~--da:n:0 if and only if f(x) = 0 for all x € S.
5

4. Triangle inequality:

’/"'/Sfdxr“d% </"'/S|f|d$1“'d$n‘

6.9 Computing Triple Integrals

A more complicated case of a triple integral is where S is a solid which is bounded
below by a surface z = g (z, y), bounded above by a surface z = go(z,y), y is bounded
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between two curves hy(z) and he(z), and x varies between a and b. Then

J[] 7wz dedy i = /ab/hhg(?) /ggz(x’y)f(:v,y, Ddzdyds . (6.6)
S

1(z 1(z,y)

Notice in this case that the first iterated integral will result in a function of x and y
(since its limits of integration are functions of x and y), which then leaves you with a
double integral of a type that we learned how to evaluate in Section 6.5. There are, of
course, many variations on this case (for example, changing the roles of the variables
x, Yy, z), S0 as you can probably tell, triple integrals can be quite tricky.

Example 6.14. Let S denote the solid in the first octant underneath the plane x +
y+ 2z =1, see Fig. 6.10. Let us evaluate the triple integral

///S(:c—l—y—irz)dzdyd:c

over S.

Figure 6.10: A depiction of the solid in the first octant underneath the plane x+y+2 =
1.

First, we observe that S = {(z,9,2): 0 <z <1, 0<y<l—-2z,0<z<l—x—y}.
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Thus we have

//[q(x+y+z)dzdydx =

l—x—
/ y:ﬁ+y+z)dzdydx
0

z=1l—x—y
<x+yz+1f

) dy dx

z=0
(x—l—y 1—:c—y)+%(1—:c—y)2)dyd:c
[ et ) v

y=1-zx
3 dz
y=0

Note that the volume V of a solid in R? is given by

= ///1d:vdydz. (6.7)
5

Since the function being integrated is the constant 1, the above triple integral reduces
to a double integral of the types that we considered in the previous section if the solid
is bounded below and above by surfaces z = g1(z,y) and z = go(z,y), respectively,
with y bounded between two curves hy(z) and hy(z), and x varies between a and b.

Then
g2(2,y)
V= ///1dmdydz-/ / / 1dzdydx
hi(z) Jao1(z,y)
= — dy dzx.
//hl(x 91(x,y)) dydx

Example 6.15. Find the volume of the solid S bounded by the three coordinate
planes, bounded above by the plane x 4+ y + z = 2, and bounded below by the plane
r+y—2z2=0.

The volume is trapped between the upper plane z = 2 — x — y and the lower plane
z =x +y. Thus the limits for z are

r+y<z<2—x2—y. (6.8)

Note that (6.8) can only hold if z +y < 2 — 2 — y, which is equivalent to y < 1 — z.
Together with the assumption y > 0, we obtain the limits for y,

0<y<1l—u (6.9)
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Finally, (6.9) implies < 1, which together with z > 0 gives the limits for x,
0<z <1, (6.10)
Combining (6.8), (6.9), and (6.10), we can describe the solid S as
S={(z,y,2):0<2<1,0<y<l—z, z4+y<z<2—x—y}
Hence

Volume(5) :// ldxdydz
s

1 pl—x p2—x—y
= / / / ldzdydx
0 JO 4y
1 rl—x
/ / (2 — 2z —2y)dydx
0o Jo
1 y=1—x
(Qy — 2zy — ) dx
y=0
1
(200 =) = 22(1 — 2) — (1 — 2)?) da

1
(x —1)*dx

Il
S—

Wirs— 5—
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